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Notation and assumptions

Let W1,W2, · · · ,Wn be i.i.d. random variables with cumulative distribution func-

tion F . We denote by Q the quantile function associated with F . We make the

following assumptions:

A1. F is invertible for 0 < p < 1 and absolutely continuous with respect to

Lebesgue measure with density f .

A2. E(W1) = 0 and E(W 2
1 ) = 1.

A3. Q is twice continuously differentiable at any 0 < p < 1.

Note that owing to assumption A1, the quantile function Q is the regular inverse

of F and not the generalized inverse.
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k-means clustering

The k-means clustering method for the case k = 2 requires us to minimize (with

respect to k∗) the following within group sum of squares:
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Hartigan’s split function

The split function was introduced in Hartigan (Annals of Statistics, 1978) for

partitioning a sample into two groups, and it is defined as

B(Q, p) = p(Ql(p))
2 + (1− p)(Qu(p))

2 −
(∫ 1

0

Q(q)dq

)2

, (1)

where

Ql(p) =
1

p

∫
q<p

Q(q)dq =
1

p
E[W1IW1<Q(p)],

and

Qu(p) =
1

1− p

∫
q≥p

Q(q)dq =
1

1− p
E[W1IW1≥Q(p)].
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Split point

A value p0 which maximizes the split function is called the split point. It is seen

that if Q is the regular inverse, as in our case, p0 satisfies the equation

(Qu(p0)−Ql(p0))[Qu(p0) +Ql(p0)− 2Q(p0)] = 0, (2)

where the LHS is the derivative of B(Q, p). Evidently, (Qu(p) − Ql(p)) > 0 for

all 0 < p < 1 and we hence, for our purposes, consider the cross-over function,

G(p) = Ql(p) +Qu(p)− 2Q(p), (3)

for examining clustering properties.
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Empirical cross-over function

From a statistical perspective, we would like to work with the empirical version

of (3). We deviate here from Hartigan’s framework and consider the empirical

cross-over function(ECF), defined as

Gn(p) =
1

k

k∑
j=1

W(j) −W(k) +
1

n− k

n∑
j=k+1

W(j) −W(k+1), (4)

for k−1
n

≤ p < k
n

and

Gn(p) =
1

n

n∑
j=1

W(j) −W(n), (5)

for n−1
n

≤ p < 1, where 1 ≤ k ≤ n− 1.
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Empirical split point

We now introduce the empirical split point in range [a, b], 0 < a < b < 1, the

empirical counterpart of the p0 as

pn = pn(a, b) :=


0, if Gn

(
k−1
n

)
< 0 ∀k such that na < k < nb+1;

1, if Gn

(
k−1
n

)
> 0 ∀k such that na < k < nb+1;

1
n

[
max{na < k < nb : Gn

(
k−1
n

)
Gn

(
k
n

)
≤ 0}

]
, otherwise.

The quantity pn is our estimator of p0, the true split point (when it is in the

range). If pn is equal to 0 or 1, we declare that the split point is outside the

range. The asymptotic behavior of pn can be used for the construction of test

for the presence of clusters in the observations, or for the estimation of the true

split point.
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Functional CLT for Gn(p)

Consider Un(p) =
√
n(Gn(p)−G(p)).

Theorem 1 Define

θp =
1

p
W1IW1<Q(p) −

1

p
Q(p)IW1<Q(p)

+
1

1− p
W1IW1≥Q(p) −

1

1− p
Q(p)IW1≥Q(p)

+
2IW1<Q(p)

f(Q(p))
.

Under assumptions A1-A3,

Un(p) ⇒ U(p),

in the Skorohod space D[a, b], 0 < a < b < 1 equipped with the J1 topology,

where U(p) is a Gaussian process with mean 0 and covariance function given by

C(p, q) = Cov(U(p), U(q)) = Cov(θp, θq). (6)
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LLN for Gn(p)

The next lemma states that the Gaussian process U(p) allows a continuous

modification. This fact is employed, for example, to justify the usage of the

mapping theorem.

Lemma 1 Under assumptions A1-A3, the centered Gaussian process U(p), a ≤

p ≤ b with covariance function in (6) is continuous.

This immediately leads us to the following important consequence.

Corollary 1 Under assumptions A1−A3, as n → ∞,

sup
a≤p≤b

|Gn(p)−G(p)| P→ 0.
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Consistency of pn

An immediate consequence is consistency of pn. As in Hartigan (1978) (Theo-

rem 1) we require a uniqueness condition.

Theorem 2 Assume A1 − A3 hold. Suppose that G(p) = 0 has a unique

solution, p0. Then for any 0 < a < p0 < b < 1

pn
P→ p0,

as n → ∞.
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Normality of pn

Now, under an additional assumption that G′(p0) < 0 (cf. with Theorem 2

from Hartigan (1978)) one can establish asymptotic normality of pn. This

result is proved in three steps. First, we establish that pn is in the Op(1/
√
n)

neighborhood of p0. Then we show that in this neighborhood Gn(p) can be

adequately approximated by a line with slope G′(p0). Finally, an approach based

on Bahadur’s general method (see p. 95, Serfling (1980)) is employed to get

the CLT for pn.
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Normality of pn: pn is in the Op(1/
√
n) neighborhood of p0

Lemma 2 Assume A1−A3 hold. Suppose that G(p) = 0 has a unique solution,

p0, and G′(p0) < 0. If a, b are such that 0 < a < p0 < b < 1, then for any δ > 0

there exist N and C > 0 such that for all n ≥ N

P

(
|pn − p0| ≤

C
√
n

)
> 1− δ.
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Normality of pn: Gn(p) is almost a line with slope G′(p0) in the neighborhood

Lemma 3 Assume A1−A3 hold. Suppose that G(p) = 0 has a unique solution,

p0, and G′(p0) < 0. Then for any C > 0

sup
p∈In

√
n
∣∣Gn(p)−Gn(p0)−G′(p0)(p− p0)

∣∣ P→ 0, as n → ∞,

where In = [p0 − C√
n
, p0 + C√

n
], and

G
′
(p0) =

1

p0
[Q(p0)−Ql(p0)]−

1

1− p0
[Q(p0)−Qu(p0)]− 2Q′(p0). (7)
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Normality of pn: connection between pn and Gn

Lemma 4 Assume A1−A3 hold. Suppose that G(p) = 0 has a unique solution,

p0, and G′(p0) < 0. If a, b are such that 0 < a < p0 < b < 1 then as n → ∞

pn = p0 −
Gn(p0)

G′(p0)
+ op(n

−1/2),

where G′(p) is as defined in (7).
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Main result: CLT for pn

Theorem 3 Assume A1 − A3 hold. Suppose that G(p) = 0 has a unique

solution, p0, and G′(p0) < 0. If a, b are such that 0 < a < p0 < b < 1 then as

n → ∞,

√
n(pn − p0) ⇒ N

(
0,

V ar(θp0)

G′2(p0)

)
,

where θp0 is as defined in Theorem 1.
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First example: Old Faithful geyser

We demonstrate here how Theorem 3 can be employed to construct approx-

imate confidence intervals (CI) for a theoretical split point. We consider a

classical example of bimodal distribution—the variable “eruption” in the data

set faithful available in R package MASS. The data set contains 272 measure-

ments of the duration of eruption for the Old Faithful geyser in Yellowstone

National Park, Wyoming, USA.
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First Example: Old Faithful Geyser

First, we plot the ECF for the variable ”eruption”; the plot is given in Figure 1.
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We can see that Gn(·) is generally a decreasing function that crosses zero line

once, far away from 0 and 1: the end-points of its domain which is the (0,1)

interval. Thus our point estimate of theoretical split point is pn = 97/272 ≈
.357.

18



First example: Old Faithful geyser

Now, to construct an approximate CI for p0 we need to estimate V ar(θp0)/G
′2(p0).

A straightforward (but rather tedious) calculation shows that this quantity ex-

plicitly depends on the following terms: p0, Q(p0), f(Q(p0)), Ql(p0), Qu(p0),

Bl(p0) =
1

p0
E[W 2

1 IW1<Q(p0)], and Bu(p0) =
1

1− p0
E[W 2

1 IW1≥Q(p0)].

We estimate these terms as follows:

p0 ≈ pn, Q(p0) ≈ W(98),

Ql(p0) ≈
1

98

98∑
i=1

W(i), Qu(p0) ≈
1

272− 98

272∑
i=99

W(i),

Bl(p0) ≈
1

98

98∑
i=1

W 2
(i), Bu(p0) ≈

1

272− 98

272∑
i=99

W 2
(i).

Finally, f(Q(p0)) is estimated by f̂(W(98)), where f̂ comes from the standard R

function density. As a result, for instance, the 95% confidence interval for a

theoretical split point p0 is given by

.357± .057.
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Second example: Merton/Kou models

The popular Merton model for assets pricing Xt is a one-dimensional process

given by

Xt = X0 + µt+ σBt +

Pt(λ)∑
k=0

Jk 0 ≤ t ≤ T, (8)

where the scalar µ ∈ R represents the drift component of the process, σ ∈ R+,

its spot volatility, Bt is the standard Brownian motion and the process Pt is

a Poisson jump process with intensity λ with jumps sizes represented by i.i.d

random variables Jk. It is assumed that Bt, Pt(λ) and {Jk} are independent.
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Second example: Merton/Kou models

“Geometric” version is called the Kou’s jump-diffusion model. It is a process

defined by the stochastic differential equation

dSt

S(t−)
= µdt+ σdBt + d

(
Pt(λ)∑
i=1

(Vi − 1)

)
, (9)

where Vi are i.i.d non-negative random variables and all other quantities are

as defined in the Merton model in (8). We observe either Xt or St only at n

discrete equally spaced times: 0 ≤ ∆ ≤ 2∆ ≤ · · · ≤ n∆ ≤ T where ∆ = T/n.
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Second example: Merton/Kou models

Special Case

In this illustration, we use the notation of the Merton model. For the purposes

of demonstrating the utility of our method, we consider a special case of (8)

when all the jumps are of unknown constant size h > 0. The model in (8)

consequently reduces to

Xt = X0 + µt+ σBt + hPt(λ) 0 ≤ t ≤ T. (10)
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Second example: Merton/Kou model
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Second example: Merton/Kou model

We report the performance of our test and also provide a comparison with the

test given in Ait-Sahalia and Jacod (2009) with p = 4, k = 2 and ∆n = 1
n
.

We perform 10000 simulations with µ = 0 and σ = 1 since both the tests

do not depend on them. To recall, the null hypothesis is that the process Xt

follows a Brownian motion with constant drift µ and constant volatility σ and

the alternative hypothesis is that the Xt follows the Merton/Kou model.
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Second example: Merton/Kou model

Here are the results:

Rejection rate in simulations
n Our test Ait-Sahalia’s test

500 0.043 0.1037
1000 0.046 0.0776
5000 0.0492 0.0452
10000 0.0497 0.0418
25000 0.0482 0.0465
50000 0.0501 0.0505

From the table we can observe that our test requires fewer number of obser-

vations, as compared to Ait-Sahalia’s test, to attain level α. However, this is

not surprising since Ait-Sahalia’s test is applicable under a very general setup

for a large class of semimartingales. Our test, on the other hand, is testing for

two specific models and expectedly performs better. Our claim, however, is, if

one is interested in choosing between a Brownian motion with drift model and

the Merton/Kou model, our test is a better alternative to Ait-Sahalia’s general

test.

25



References

• K. Bharath, V.I. Pozdnyakov, and D. Dey, Asymptotics of a Clustering Cri-

terion for Smooth Distributions, Electronic Journal of Statistics, 7 (2013),

1078-1093.

• K. Bharath, V.I. Pozdnyakov, and D. Dey, Asymptotics of the Empirical

Cross-over Function, Annals of the Institute of Statistical Mathematics,

to appear.

26


