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Chapter 1

Basic Set Theory

1.1 Terminology and Notation

e Sample space £2: an arbitrary set representing a list of possible outcomes

w € Q of a random experiment.
e Fvents A,B,C,.... any subsets (A C ) of the sample space 2.

e Impossible event (): the empty set.

We say that A is a subset of B (A C B), iff w € A implies w € B, and we
say that A = B, iff A C B and B C A.

Set operations.

1. Complementation:

AC

{w:w ¢ A}



2. Intersection over arbitrary index set T

ﬂAt:{w:weAtforallteT},
teT

also, in case of a small number of events, we will use:

ANBor AB.

3. Union over arbitrary index set T

UAt:{w:wEAtforsometET},
teT

also, in case of a small number of events, we will use:

AU B.

4. Set difference:

A\ B = AB-.

5. Symmetric difference:

AAB=(A\B)U(B\ A).

Events A and B are mutually disjoint or mutually exclusive if ANB = {. In

case of mutually disjoint events A + B can be used for AU B.



Properties of set operations:

1. Complementation:

(A)=A4A, 0°=9Q, Q°=0.

2. Commutativity:

AUB=BUA, ANB=BnA.

3. Associativity:

(AUB)UC =AU (BUC), (ANB)NC=AN(BNC).

4. De Morgan’s laws:

) ne (04 -ys

teT teT teT teT

5. Distributivity:

BN (UAt> =JB4, BU <ﬂAt> =) (BUA).

teT teT teT teT



We define the indicator function of A as

1, ifwed
la(w) =
0, ifwe A°
Note that
1u<1pif ACB
and

lae=1—14.

1.2 Limits of Sets

We define
fuf A= 1] A
- k=n
sup Ag = A
= U e
= k=n
liminf A,, = U ﬂ Ap ={w:we A, for all n > ng(w)},
n—oo
n=1k=n

limsup 4,, = ﬂ U Ay = {w : w € A, infinitely often} .

oo n=1k=n

If for some sequence of evens {B,,}

limsup B,, = liminf B, = B,

n—00 n—00



then B is called limit of By, and we write

lim B, = Bor B, — B.

n—oo

Properties:
1. liminf, o A, C limsup,,_, . An
2. (liminf, . A,)° = limsup,,_, ., A

We say that a sequence of events {4, } is monotone non-decreasing (A, 1)

if Ay C As C ..., and it is monotone non-increasing (A, }) if A1 D As D ...

Proposition 1.1 For a monotone sequence of sets, the limit always exists:
(1) if Ay 1, then lim, o0 A,y = Uy An,

(2) if Ay L, then lim, oo Ay, = (Vo y An.

Consequently,

liminf B,, = lim (inf Bk> , limsup B, = lim (sup Bk) .

n—00 n—oo \ k>n n—o00 n—00 \ p>n

Proof. Let us prove (1). We only need to show that limsup,, 4,, C liminf,, A4,,.

First note that monotonicity gives us

limniann = [j ﬁ A = [j A,.
n=1

n=1k=n



But also we have

limsup 4,, = ﬁ [j A C [j A, = 1imninf A,

n=1k=n n=1

which finishes proof. 5

1.3 Fields

Definition 1.1 A non-empty class of subsets, A, of Q0 is called field if
(1) Qe A,
(2) A€ A implies A° € A,

(3) A, B € A implies AUB € A.

One can show that field is a collection of subsets which is closed under finite

union, finite intersection (note AB = (A°U B€)¢) and complements.

Definition 1.2 A non-empty class of subsets, B, of Q is called o-field if
(1) Q€ B,
(2) B € B implies B® € B,

(8) B; € A,i > 1 implies Ui21 B; € B.

A o-field is a collection of subsets which is closed under countable union,
countable intersection and complements.

Examples.

1. The power set. The set of all subsets of 2, 2 is a o-field.

10



2. The trivial o-field. {0, Q} is a o-field.

3. The countable/co-countable o-field C. Let Q = R, A € C iff either A is

countable or its complement is.

Exercise 1.1 Let Q@ = N. A € C iff either A is finite or its complement is. Is C

a field? o-field?

Exercise 1.2 Let Q = N. For any A, a subset of N, we define A, = A([1,n].
Let a,, is the cardinality of A,. Consider a collection of subsets of N, A, for

which limy, o0 an /0 exists. Is A a field? o-field?

Let By and By be o-fields, the intersection of By and By is {B C Q: B €

Bl and BQ}

Proposition 1.2 An intersection (finite or over an index set) of o-fields is a

o-field.

Proposition 1.3 Let C be a collection of subsets of Q2. Then there is a smallest

o-field o(C) containing all the sets that are in C.

Proof. First note that there is at least one o-field that contains C. Let us define
a(C) as a collection of all sets that belong to every o-field containing C. It is

easy to check that o(C) is a o-field, and it is the smallest.

1.4 Monotonic Class

Definition 1.3 A collection M of subsets of € is a monotonic class if A, €

M,n=1,2... and A, T A or A, | A implies that A € M.

11



Let C be a collection of subsets of €2, then by u(C) we denote the smallest

monotonic class containing all the sets that are in C (which exists, prove it).

Proposition 1.4 Let A be a field of subsets of Q. The following two conditions
are equivalent:
(1) Ais a o-field,

(2) A is a monotonic class.

Proof. (1) = (2) Any o-field is obviously a monotonic class (recall 4, T A =
UnAp).
(2) = (1) Let A, € A. Consider B,, = |Ji_; A;. Since A is a field, B,, € A.
But also B,, C By+1, and B,, 1 Uil A;, therefore, by definition of a monotonic
class [J;2, Ai € Ao

The following theorem shows that by taking monotonic limits we can turn

a field into a o-field.

Theorem 1.1 Let A be a field of subsets of Q2. Then

Proof. By Proposition [[4 o(.A) is a monotonic class, therefore, p(A) C o(A).
Thus, it would be enough to establish that u(A) is a field (and, therefore, a
o-field, by Proposition [[.4] again).

First, we show that A € u(A) implies A° € u(.A). Consider

M ={B:B e u(A), B° € u(A)}.

12



Note that A € M C u(A). Tt is easy to prove that M is a monotonic classH
Since u(A) is the smallest monotonic class, M = u(A), and, as consequence,
we have A € p(A) = A e M = A° € u(A)

Next, we prove that u(.A) is closed under taking finite unions. Consider
Mi={A: AUB € p(A) for all B € A}
Then M; is a monotonic class and A C My, therefore, u(A) C M. Let
My ={B:AUB € u(A) for all A e u(A)}.

Then M is also a monotonic class. Now, if B € A4 and A € u(A) C My, then,
by definition of M; we get AU B € u(A), that is, B € My. Thus, A C Mo,
and by minimality of u(.A) we get u(A) C M. Finally, if B € u(A) C My and

A € p(A), by definition of My we obtain AU B € u(A). g

Exercise 1.3 Prove that M, M;, and M3 are monotonic classes.

1.5 Dynkin’s theorem

Definition 1.4 A collection P of subset of Q) is a w-system if it is closed under

finite intersection.

Definition 1.5 A non-empty class of subsets, L, of Q0 is called M-system if

1For example, we need to show that if B, € M and B, 1 B then B € M. By definition
of M, By, € M implies that By, € u(A) and BE € pu(A). Since p(A) is a monotonic class, we
obtain that B = lim 1 B, € u(A) and B¢ =lim | BS € u(A), i.e. B, indeed, belongs to M.

13



(1) Qe L,
(2) A,Be L, AC B implies B\ A€ L,

(8) B; € L,i > 1, B; C B;+1 implies Ui21 B;e L.

Definition 1.6 A non-empty class of subsets, L, of Q0 is called N -system if
(1) Qe L,
(2) B € L implies B® € L,

(3) if Bi € L,i > 1 and they are disjoint, then 3, B; € L.
Exercise 1.4 Prove that postulates of A-system and \-system are equivalent.

Let C be a collection of subsets of Q, then by A(C) we denote the smallest

A-system containing all the sets that are in C.

Theorem 1.2 (Dynkin’s Theorem) Let P be a w-system of subsets of .
Then

A(P) = o(P)

Proof. Every o-field is a A-system, therefore, A(P) C o(P). Now, if we prove
that A(P) is closed under finite intersection, then A(P) is a o-field, and, as a
result, o(P) C A(P).

Let us define

L1 ={BeAP):BNAcAP) forall AcP}.

It is easy to see that P C Ly, L1 is a A-system. Therefore, by minimality of

A(P) we have A\(P) C L;. By definition of £; we also have £; C A(P). That is,

14



Now let

Ly ={A€XP): BNAecP) forall B € A(P)}.

Again L is a A-system.

Now, if B € P and A € A(P) = L, then, by definition of £; we get
AN B € A(P), that is, B € L£5. Thus, P C L2, and by minimality of A(P)
and definition of Lo we get A(P) = L2. That is, whenever A € A(P) = L3 and

B € A(P), by definition of Ly we obtain AN B € A(P).

Exercise 1.5 Show that £ and L5 are \-systems.

Exercise 1.6 Prove that if a A-system is closed under intersection, then it is a

o-field.

Exercise 1.7 Let P be a m-system, and £ be a A-system. Prove that if P C L,

then o(P) C L

Exercise 1.8 Give an example of A-system which is not a o-field.

1.6 Borel o-fields

Consider the real line R and let Z be the collection of intervals of form:

(a,)) ={x €eR:a<x<b}

15



for all @ and b, —oo < a < b < oo, with a convention that (a, 0] = (a,00). Let

A be the system of finite sums of disjoint intervals of the form (a, b], i.e.,

A€ AfFA = (a;,bi].

i=1
Exercise 1.9 Prove that A is a field, but not a o-field.

Definition 1.7 The Borel o-field on the real line, B(R), is the smallest o-field

that contains A, and its sets are called Borel sets.
Exercise 1.10 Observe that 7 is a m-system. Show that ¢(Z) = B(R).

Note that

=
=

I
(@

(avb_ l/n]a
1

3
Il

[a,0] = () (a —1/n,b],
n=1
{a} = ﬂ (a —1/n,al.

Thus the Borel o-field contains singletons {a} and all sets of these six forms

(a,b), [a,b], [a,b), (—o0,b), (—o0, b], (a, c0).

One can show that that construction of the Borel o-filed can be based on any

of these six types of intervals.

Exercise 1.11 Let Z; is the collection of intervals of form [a,b]. Show that

o(T1) = B(R).

16



Proposition 1.5 Let C be a collection of subsets of Q, let B C 2, and define

collection of subsets of B:

CNB={ANB:AcC).

Then

oc(CNB)=0c(C)NB,

as o-fields on B.

Proof. Obviously CN B C o(C) N B. Also it is clear that ¢(C) N B is a o-field

(on B), therefore, by minimality of o(C N B) we get that

o(CN B) C o(C)NB.

Now let us define

Cp={Aco(C): ANBeo(CNB)}.

Note that Cp is a o-field (on ), and

CcCgco(C).

Therefore,

U(C) C O’(CB) =Cp C O'(C),

17



and 0(C) = Cg. Thus, if A € o(C) = Cp, then by definition of Cp we get

AN B € o(CN B) which means that o(C) N B C o(CN B). O

Exercise 1.12 If collections C; and Cy are such that C; C Ca, then o(C1) C

U(CQ).

Definition 1.8 Let T is a collection of all closed intervals of [a,b]. The Borel
o-field on [a,b], B([a,b]), is is the smallest o-field that contains I, and, by

Proposition

18



Chapter 2

Probability Space

2.1 Definition and Basic Properties

Definition 2.1 A probability space is a triple (2, F,P), where
(a) Q is a set of points w;
(b) F is a o-field of subsets of Q;

(c) P is a o-additive probability measure, i.e.

1. P:Fw[0,1],

3. If {An}n>1 are disjoint events from F, then

P(|J 4n) = > P(4,).

n>1 n>1

19



Properties of probability measures.

1. P(A°) = 1 — P(A).

Proof. 1=P(Q) =P(AU A°) = P(A) + P(A4°).

2. P(0) = 0.

Proof. P()) =P(Q°) =1-P(Q) =1-1.

3. P(AUB) = P(A) + P(B) — P(AB).

Proof. Note first that

P(A) = P(AB°) + P(AB),

P(B) = P(BA®) + P(AB).

Thus
P(AUB) = P(AB°UBA°UAB)
= P(AB°)+ P(BA°) +P(AB)
= P(A)—-P(AB)+P(B)—-P(AB) + P(4B)
= P(A)+P(B)—P(AB).
O

4. Inclusion-Ezxclusion Formula:

n

Pl J4) = Y PA)-DY PANA)+ Y PANA;NA)

i=1 1<j i<j<k

20



+o (=D)"TIP(A N N AY).

Proof. By induction. The induction base, case of n = 2, has already been

proved. Transition from n — 1 to n is based on the following observation:

n n—1

n—1 n—1
P(JA4) =P A ua,) =P 4)+P(4,) —P(|J 4i4n).
i=1 i=1

i=1 i=1

After applying the inclusion-exclusion formula (twice) for n — 1 we obtain

the needed result. 0

. Monotonicity Property:
P(AjUAy--) <P(A1) +P(A2) +---.

Proof. Let By = Ay, B, = A{---A%_A,, n > 2. It is easy to see that

B;NB; = and Un21 A, = anl B,,. Therefore,

P(AjUAy---) = P(Bi+Bz2+--+)

< P(A)+P(Ay) +---.

O

Theorem 2.1 Let P be a finitely additive measure of sets from o-field with

P(Q) = 1. The following four conditions are equivalent:

li.e., for every disjoint sets A and B in F we have P(A + B) = P(A) + P(B).

21



(1) P is o-additive (i.e., P is a probability measure),
(2) P is continuous from below, i.e., if A, T A, A,, € F, then P(A,) 1 P(A4),
(8) P is continuous from above, i.e., if A, | A, A, € F, then P(4,,) | P(A),

(4) P is continuous at 0, i.e., if A, L 0, A, € F, then P(A,) | 0.

Proof. (1) = (2)

Let A, T A, A, € F.

P(LJ Aﬂ) = P(Al4—A2\141+2A3\442+‘”')

n>1
= P(Ay) + P(As\ Ap) + P(Ay\ Ag) + -
= P(A)) + P(Ay) — P(A)) + P(A3) — P(As) + -+
= liranP(An)
(2) = (3)

Let A, | A, A, € F. Consider sequence {A%},>1. It is nondecreasing, there-
fore, by (2)

lim P(47) = P(| ] A5).

n>1
Now,

ImP(A,) = lim(l1-P(AS)) =1-1limP(A%)

n

= 1-P(|J A =1-P([[) 4.9

n>1 n>1
= 1-1+P([]4.)=P([) 4n)
n>1 n>1

22



(3) = (4)
Obvious.
(4)=(1)

Let {A;};>1 be disjoint events from F.

n

ZP(AZ-) = 11711112 P(A;) = lirrlnP(Z A;)

= 1m[P(}"A)-P( Y A
=1 1=n+1
=1 1=n+1 =1

because Y7 1 A; L 0 (why?), and by (4) lim, P (372, .1 Ai) =0.

Exercise 2.1 Consider a probability space (2, F, P). Suppose that A = lim 4,,

exists, where A,, € F. Show that

lim P(4,) = P(A).

Exercise 2.2 Let (Q, F,P) be a probability space. Consider set function on
F x F:

p(A, B) = P(AAB).

Show that p(-,-) satisfy the triangle inequality, i.e., for any A, B,C € F

p(A,C) < p(A, B) + p(B,C).

Exercise 2.3 Let p be a finitely additive finite measure on a field A, let A;,7i >

23



1 be disjoint sets from A4 such that A = Zizl A; also belongs A. Which one,

() w(4) 2 Y p(Ai) or  (b) p(A) <Y plAi),

i>1 i>1

is true? Prove that one, and give a counterexample for another.

2.2 Cumulative Distribution Function

Consider the probability space {R, B(R), P}. Let
F(z) = P((o0, z]).

Proposition 2.1 The function F(x) has the following properties:
(1) F is right continuouﬂ and has a limit on the left,
(2) F is monotone non-decreasing,

(8) F(—00) =lim,| oo F(x) =0, F(00) = limgtee Fi(z) = 1.

Proof. The continuity property of P implies (1) and (3) (check it!). Monotonic-

ity of P gives (2).

Definition 2.2 A function F : R — [0,1] that satisfies (1)-(3) is called a cu-

mulative distribution function.
Three types of distribution functions:

e Discrete distribution function. If F' is piecewise constant, and it changes

its values at points x1, xg, ... by jumps of size p1,p2,... (px > 0, >, Dk =

2If 2 |, then F(zy) | F(z)

24



1), then F' is called discrete. Examples: Discrete Uniform, Bernoulli,

Binomial, Poisson, Geometric etc.

e Absolutely continuous distribution function. If F' has the representation

Fo) = [ " F)dy,

for some nonnegative function, then F' is called absolutely continuous, and
function f is called the density of the distribution function F. Examples:

Uniform on [a, b], Normal, Exponential, x2, Cauchy etc.

e Singular distribution function. If all the points of increases of the continu-
ous distribution function belongs to a set with zero Lebesgue measure
(see later), then F is called singular. It is a very strange type of distribu-

tion one example of which can be found in Shiryaev (1995, p. 156).

One can show that any distribution function F' can be represented as a mizture
F(z) = agFy(z) + acF.(x) + asFs(x),

where ag, ., a5 > 0, ag + a. + ay = 1, and cdfs Fy, F., and F, are discrete,

absolutely continuous and singular, respectively.

2.3 Set Induction: Dynkin’s Theorem Again

Set induction is the most important application of Dynkin’s Theorem.

3z is a point of increase of F' if for any € > 0 we have F(x +¢) — F(z —¢€) > 0

25



Proposition 2.2 Let Py, Ps be two probability measures on {Q, F}. The col-

lection

L={AecF :Pi(A) =Py(A)}
is a \ system.

Proof. Let us use here \'-system postulates.

First, note that {2 € £, because P1(Q) = P,(Q2) = 1.

Second, A € L, i.e., P1(A) = Po(A) implies A° € L, i.e., P1(A%) = Py (A°),
because

Pi1(A°)=1-P1(A) =1—-P2(A) = Py(A°).
Finally, if {A;} is a sequence of mutually disjoint events from £, then
P J4) =D Pi(A) =D Pa(4;) =Py(| JA4).

That is, |J; 4 € £. o

Theorem 2.2 (Set Induction) Let Py, Py be two probability measures on

{Q,F}. Let P be a w-system such that
AeP = Pl(A) = PQ(A),
then

B € o(P) = P1(B) = Py(B).

26



Proof. Define

L={AeF :Pi(A) =Py(4)}.
By Proposition 221 L is a A-system. But P C L, therefore, by Dynkin’s Theorem
O'(P) C L. 0

Exercise 2.4 Give an example that shows that if P is not a m-system then Set

Induction Theorem does not hold.

Proposition 2.3 Let Q@ = R. Let Py, Py be two probability measures on
{R,B(R)} such that their distribution function are equal, i.e., for any x € R

Fi(z) = Fa(xz). Then Py =Psy on B(R).

Proof. Let

P ={(—o0,2]: z € R}.

Obviously, P is a m-system. As we know o(P) = B(R). Now, Fi(z) = Fa(x)

implies that Py and Py agree on P, therefore they agree on o(P) = B(R).

2.4 Construction of Probability Spaces:

Discrete Models

Let Q = {w1,ws, ...} is countable. For each w; we assign the number p;, where

1>1, p; >0and Zpizl-

i>1
Let F be the set of all subsets of €2, 2.

27



For A € F, we define

w; €A
The set function P is a probability measure.

Exercise 2.5 Show that P is a probability measure.

The introduced probability space {Q, F,P} is called a discrete probability

space.

Example 2.1 Flipping a loaded coin N times.

Q={0,1}" ={w= (w1, ...,wn) :w; =0 or 1}.

Probability P is determined by

P = pi@igN 2w

where p > 0, > 0,p + ¢ = 1. Check that P is a probability measure.

Example 2.2 Coincidences. Suppose the integers 1,2, ....n are randomly per-

muted.

Q={w=(x1,..,xn) x; €{1,..,n};i=1,...,n;z; # z;}.

Probability P is defined by

P(w)=1/n!

28



What is the probability that there is an integer left unchanged by the permu-
tation? Let A; is event when ¢ left by the permutation on the ith position. By

the inclusion-exclusion formula we obtain

P((JA) = D PA) =D PANA)+ > PANANAL)
i i i<j i<j<k

+od (=D)"TIP(A N N AY).

n!

n! n!

1 1 1
— L 4 (_1)H
B 2'+3! +(=1) n!
~ 1—-e¢!la.632

Note that the convergence is fast.

Example 2.3 Birthday paradox. Suppose that there are n students in class.
Let us suppose that each student’s birthday is on one of 365 days and that all
days are equally probable. What is the probability, P,, there are at least two

students in the class whose birthdays coincide?

Q={w:w=(a1,..,an);a; =1,..., M}.

Probability P is determined by

29



Let

A={w:w="(a1,..,an)};a; # aj;i # j},

i.e., the event in which there is no repetition. It is easy to see that |A| = (M),, =

M(M —1)...(M —n+ 1), therefore

(M),

P, | .016 .284 476 .507 .891 .997

Exercise 2.6 The Chevalier de Mere problem. What event has a better chance
to occur: (1) rolling a 6 in four tosses of a single fair die or (2) rolling “double-6”

in twenty-four tosses of two fair dice?

2.5 Construction of Probability Spaces:

Uncountable Spaces

Unfortunately, not every problem can be solved within framework of discrete
probability space. Even if it is about a flipping a fair coin, sometimes we have
questions that involve infinite number of flips. For instance, what is the expected
waiting time till the first occurrence of head? Theoretically, we can have 100 or
1000 tails before the first head, therefore, an appropriate sample space would
be:

Q={HT1TH"
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which is an uncountable set.
Exercise 2.7 Show that Q = {H,T}" is uncountable.

Earlier we saw that for every probability measure P on (R, B(R)) one can
construct a distribution function associated with P. We now show that converse
is also true. The workhorse that we are going to use in this construction is
Caratheodory’s (extension) theorem. The proof of the theorem is omitted—

Caratheodory’s theorem is important but it will be used only once.

Theorem 2.3 (Caratheodory’s Theorem) Let Q be a space, A is a field of
its subsets, B is o(A). Let po be a finite (i.e, po(Q) < 00)) o-additive measure

on (Q,A). There exists a measure p on (2, B) such that

w(A) = po(A), for any A € A,

and this extension is unique.

Theorem 2.4 (Lebesgue-Stieltjes Integral) Let F(x) be a cumulative dis-
tribution function on the real line R. There exists a unique probability measure

P on (R, B(R)) such that

P((a,0]) = F(b) - F(a)

for all a,b,—c0 < a < b < 0.

Proof. Let A be the system of finite sums of disjoint intervals of the form (a, b],
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ie.,

A€ AfFA =" (a;,bi].

i=1

On this set we define a set function Py by the following equation:

Po(4) = S (F () — Fla)], Ac A

k=1

It is easy to check that Py is a well-define finitely additive set function on A
with Po(R) = 1. If we show that Py is also o-additive then by Caratheodory’s
theorem there exists a unique probability measure P on (R, B(R)) that extends
Py on B(R).

So let us show that Pg is o-additive on A. By Theorem 2.1 one needs to
show that Pg continuous at @, that is, if A, | 0, A, € A, then Pg(A,) | 0.

First let us suppose that the sets A, belong to a closed interval [—N, N],
N < oo. For any interval (a,b] and a’ | a by the right-continuity of F' we get
that

Po((d’,b]) = F(b) — F(d') — F(b) — F(a) = Po((a,b)).

Thus for any € > 0 we can find B,, € A such that
closure [B,] C A,,, and Po(4,,) — Po(B,) < 27"

Since (1, An = 0 we have (,,[Bn] = 0. But the sets [B,] are closed, and
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therefore by Heine-Borel theoreuﬂ there exists ng = ng(e) such that

Just note that [-N, N] is a closed interval, and {[B,]°},>1 is an open cover of

[—N, NJ, because

C

Since (2, [Bn] C [=N, N we get (2, B, C (o2, [Bn] = 0. Now since A,,, C

Apg—1 C -+ C A1 we get

Po(4,,) = Po (Ano \ ﬁ Bk) =Py (G (Ang \Bk)>
k=1

< P <Lj(Ak \ Bk))
k=1
< iPo(Ak \ Bp) < 20362*’“ <e
k=1 k=1

That is, for any € > 0 there exists ng such that for all n > ng Po(4,) <

Po(A,,) < e. Therefore, Po(4,) 4 0.

4 Heine-Borel Theorem: Any cover of a closed interval [a, b] by a system of open intervals
(or, more generally, open sets) has a finite subcover. An exercise: give an example of open
cover of (0,1) that does not allow a finite subcover.
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Now, let us treat the general case. For any e > 0 one can find (why?) N

such that Po([—N, N]) > 1 — e. Therefore,

Po(An) = Po(4,N[=N,N])+Po(A, N [-N, N

IN

Po(A, N[-N,N]) +¢
But the first term is also small for all sufficiently large n by the first part of the
proof.

Exercise 2.8 Consider a probability space (2, F,P). Let A be a field such
that o(A) = F. Show that for any B € F and any ¢ > 0 one can find A € A
such that

P(BAA) < e.

2.6 Lebesgue Measure on [0, 1]

If the distribution function is given by

0, <0
F(x) = z, 0<x<1
1 z>1

then the corresponding probability measure A is called Lebesgue measure on
([0,1], B([0,1])). Obviously, Lebegues measure formalizes the concept of length.

By Theorem [2.4] we have a probability measure defined only on Borel o-field
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B([0,1]). There is a standard procedure that allows us extend this measure to
a wider o-field B([0,1]). We say that A C [0, 1] belongs to B([0,1]) if there are

two Borel sets A and B such that A C A C B and A(B\ 4) =0.

Exercise 2.9 Show that B([0,1]) is a o-field.

The extension of A to a set function \ that is defined on B([0, 1]) is done as
follows. If A € B([0,1]), then there are Borel sets A and B such that A C A C B

and A\(B\ A) = 0. We define A\(A) = \(4).

Exercise 2.10 Show that \ is well-defined (that is, if there are Borel sets A;
and By, i = 1,2 such that A; C A C B; and A\(B;\ 4;) = 0, then A\(A;) = A(A2)),

and it is a probability measure on ([0, 1], B([0, 1]).

Definition 2.3 B([0,1]) is called Lebesgue o-field, and measure \ is called

Lebesgue measure on ([0, 1], B([0,1])).
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Chapter 3

Random Variables

3.1 Measurability

Definition 3.1 Let (2, F,P) be a probability space. A function
X:O0—R
is called a F-measurable or random variable if for any Borel set on R
X YB)={w:X(w)€B}eF.
Example 3.1 Indicator of an event. Let A € F, and

X(w) = I4(w).
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X is a random variable.

Example 3.2 Simple function. Let 4; € F,i=1,2,...,n, and

X(w) = Z xi1a, ().
i=1

X is a random variable (prove it!).

Theorem 3.1 Let T be a system of sets on R such that o(Z) = B(R). Then a

function X : Q — R is a random variable if
{w: X(w) e B}eF

forall BeX.

Proof. First note that taking the inverse image preserve the set operations of

union, intersection and complement, i.e.,

xUsy = Ux B
XH\B) = (X '(B)

X7U(B) = (XTNB))

Let

D={DeB[R): X YD) e F}.
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Since D is a o-field (why?) we have
ZcCDcCB(R)

and

o(Z) c o(D) =D C BR).

But o(Z) = B(R), therefore D = B(R). 5
That is, the measurability of a map of 2 to R can be checked on much

smaller collection of events. In particular,

Corollary 3.1 A function X : Q — R is a random variable if
{w: X(w)<a}eF

for all x € R, or

{w: X(w)<=z}eF

for all x € R.

3.2 Approximation by Simple Random Variables

Proposition 3.1 Let f : R — R be a Borel functio, and X be a random

variable. Then f(X) is a random variable.

Yie., f~1(B) € B(R) for any B € B(R)
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Proof. Since for any B € B(R), f~!(B) € B(R) we have

{w: f(X(w)€B}={w: X(w)e fYB)} e F.

That is, if X is a random variable, then so are X", X+t = max(X,0),

X~ = —min(X,0), and | X| because z", x*, 2~ , and |z| are Borel functions.

Exercise 3.1 Show that 2™, ™, 27, and |z| are Borel functions.

Definition 3.2 Let (2, F,P) be a probability space. A function

X: Q= R=[-00,00]

is called an eztended random variable if X ~1(—oc0) € F, X ~!(c0) € F, and for

any Borel set on R

X 'B)={w: X(w) € B} € F.

Theorem 3.2 The following two statements are true.

(1) If (extended) random variable X > 0, there is a sequence of simple random
variables X1, Xa, ... such that X, (w) 1T X (w) for all w € Q as n — oo.

(2) For every (extended) random variable X, there exists a sequence of simple
random variables X1, Xa, ... such that | X,| < |X| and X, (w) — X(w) for all

w €N asn— 0.
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Proof. Let us prove the first part. The second one follows from the first because

any X can be presented in the form X — X ~. For n > 1 let us define

n2™

k-1
Xn(w) = Z 2—nf(k—1)/2ngx<k/2n (W) + nlx>n(w).
k=1

It is easy to see that X, (w) T X (w). O
Exercise 3.2 Show that X, (w) 1 X (w).

Exercise 3.3 Let Q = [-1,1], F = B([-1,1]), P = A/2. Consider random
variable

X(w)=11-w|

Provide explicit formulas for simple random variables X; and X5 from Theo-

rem|3.2

3.3 Limits and Measurability

Theorem 3.3 Let X1, X, ... be a sequence of extended random variables. Then
(1) sup X,,, inf X,,, limsup X,,, and liminf X, are also extended variables.
(2) If X (w) = lim X, (w) exists for every w € 2, then X is an extended random

variable.

Proof. (1) Just note that

{w:suan>x}:U{w:Xn>x}€]:,
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and

{w:iann<x}:U{w:Xn<x}€]:.

This gives us measurability of sup X,, and inf X,,. The measurability of upper

and lower limits, lim sup X,, and lim inf X,,, follows from the following observa-

tion:
limsup X,, = inf sup X,,, liminf X,, = sup ir;f X,.
nom>n n m>n
(2) We have
{w: X(w) <z} = {w:lmX, <z}

= {w:limsup X, =liminf X,,} N{w : limsup X,, < x}

= ONn{w:limsupX, < z} = {w:limsupX,, < z} € F.
(]

Corollary 3.2 If X and Y are random variables, then X +Y, X —= Y, XY,

and X/Y are also random variables (if they are well defined).

Proof. By Theorem there exist sequences of simple random variables X,
and Y,, such that

limX, = X and limY,, =Y.

Then

X,+Y, — X=+V,
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XY, — XY,

X X
Y, + 1/nly, o v

Since sum, difference, product and quotient of two simple random variables are
random variables, therefore, by TheoremB3 X +Y, X — Y, XY, and X/Y are

random variables as limits of random variables. n

3.4 Composition and Measurability

Definition 3.3 Let X be a random variable. The following collection of sets
from F

Fx ={X"Y(B): BeBR)}
is called the o-field generated by X.
Exercise 3.4 Show that the collection Fyx is a o-field.

Exercise 3.5 Let 2 = [0, 1], F = B([0,1]), P = A. Consider random variable

w, f0<w<1/2
X(w) =

1, ifl/2<w< 1.
Describe Fx.

Let us recall (Proposition B that if f is a Borel function then f(X) is a

random variable. The converse is also true.
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Theorem 3.4 Let Y be a Fx-measurable random variable. Then there is a

Borel function f such thatY = fo X.

Proof. Let us introduce two classes:
®, is the class of Fx-measurable functions,
5 is the class of Fx-measurable functions that can be represented in form foX
for some Borel function f.
It is obvious that ®5 C ®4, therefore all we need to show that ®&; C 5.
First, let Y = I4, where A € Fx. Let us show that Y € ®,. Since A € Fx

there exists B € B(R) such that A = {w: X(w) € B}. Let

f(x) = Ip(z).

Then Y =14 = Ip(X) = f(X), le. Y € ®s.

Second, if Y is a simple function (i.e., it is a sum of indicators), then it also
belongs to ®s.

Finally, let Y be an arbitrary Fx-measurable function. By Theorem
there exists a sequence of simple measurable functions Y,, such that Y, — Y.
As we have shown there are Borel functions f,, such that Y, = f,(X), and
fo(X(w)) =Y (w). Let

lim f,(z), if lim, f,(x) exists,

fz) =

0, otherwise.
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One can show that f is a Borel function (see exercises) and

Y(w) = lim f (X (w)) = f(X(w))-

O

Exercise 3.6 Show that {x : lim, f,(x) exists} is a Borel set if f,, are Borel

functions.

Exercise 3.7 If f is a Borel function, and B is a Borel set then

f(x), ifze B,

0, otherwise,

is a Borel function.

3.5 Random Elements of Metric Spaces

Definition 3.4 By a metric space is meant a pair (S,d) consisting of a set S
and a metric (distance), i.e., non-negative real function defined for all z,y € S
which satisfies the following three properties:

(1) d(z,y) =0 iff v = y;

(2) Symmetry: d(z,y) = d(y,x);

(8) Triangle inequality: d(z,z) < d(z,y) + d(y, 2).

Definition 3.5 A subset O of metric space (S,d) is called open if for any xz € A

there exists an open ball with center x and radius r > 0 B.(z) = {y € S :
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d(z,y) <r} that also is a subset of O.

Definition 3.6 Let O be the class of open subsets of (S,d). We define Borel o-

field B(S, d) to be the smallest o-field generated by open sets, i.e. B(S) = o(O).

Definition 3.7 Let (Q, F,P) be a probability space. A function

X: Q=S

is called random element if for any Borel set B from B(S,d)

X YB)={w:X(w)eB}eF.

Definition 3.8 If X is a random variable, then the probability measure P x
defined on (R,B) by Px(B) = P(X € B), where B € B, is called probabil-
ity distribution of random wvariable X. The cdf of Py, respectively, is called

cumulative distribution function of random variable X.

Definition 3.9 If X is a random element, then the probability measure P x
defined on (S,B(S,d)) by Px(B) = P(X € B), where B € B(S,d), is called

probability distribution of random element X .
Note that there are no cdfs for random elements.

Exercise 3.8 Show that Px is a probability measure (for random variables

and elements).

Examples of metric spaces.
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e Real line R with dy(z,y) = |x — y| is a metric space. Random element on

R is called random variable.

e Real line R with

T —
dl(xvy) = | y|

S L4z —y

is a metric space.

e R"™ with

d(X,y) =

is a metric space. This space is called Fuclidean n-space. Random element

on R"™ is called random vector.
e The space of sequences, R>, with metric

o0

_ ~i |z — il
d(XJ)_EQ 1+ |z — il

is a metric space. Random elements on R is called random sequence.

e The space of continuous functions on [0, 1], C[0, 1], with metric

d(x,y) = Jmax, |lz(t) — y(t)|

is a metric space. Random element on C]0, 1] is called random function.
Exercise 3.9 Show that all the metrics above are metrics.

Exercise 3.10 Show that B(R) = B(R, dy) = B(R, dy).
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Chapter 4

Independence

4.1 Definitions of Independence
Let (Q, F,P) be a probability space.

Definition 4.1 Let Fi, Fa,... be sub-o-fields of F. These o-fields are called

independent if for any finite collection {iy}}_, and A;, € F;, we have

P((w Aﬁ) = II]?O%k)

k=1 k=1

Definition 4.2 Random variables X1, Xa, ... are called independent if the cor-

responding o-fields 0(X1),0(X2), ... are independent.

Definition 4.3 Fvents Aj, Ag, ... are called independent if o(14,),0(la,),...

are independent.
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4.2 Basic Criterion of Independence

Example 4.1 Let A and B be two events such that P(A N B) = P(A)P(B).

Then, for instance, we also have

P(A°NB°) = 1-P(A)—P(B)+P(ANB)
= 1-P(A)—P(B) + P(A)P(B)
= (1-P(A4))(1-P(B))

= P(A9)P(B°).
The next result generalizes this idea. Independence of o-fields can be checked
on a smaller classes of events. More specifically, the following result is true.

Theorem 4.1 Suppose that T and J are w-systems, and o(Z) and o(J) are

sub-o-fields of F. The o-fields o(Z) and o(J) are independent iff

PUINJ)=PU)P(J) forany I €Z,J e J.

Proof. Fix I € T such that P(I) > 0. Let us define the probability measure

(check that it is a probability measure) on o(J):

P(INB)

P;(B) = P

Beoa(T).

The measures P and P; agree on J. Therefore, by the set induction theorem
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(Theorem 2:2) P and P; agree on o(7), i.e.

P(INB)

PI(B): P(I)

=P(B) forany Beo(J), I

If P(I) =0, then P(I N B) = P(I)P(B) is obviously true.

Now, fix B € o(J) such that P(B) > 0. For any A € o(Z) we define

pya) - PANB)

BB A€ o(D).

By the first part the measures P and Pp agree on Z. Therefore, by the set

induction theorem P and Pp agree on o(Z), i.e.

poa) — PAND)

W =P(A) forany A€ o(T),Bea(T).

If P(B) =0, then P(AN B) = P(A)P(B) is obviously true.
By induction this result can be extended to any finite number of m-system.

Corollary 4.1 Two random variables X and Y are independent iff for any
z,y € R

P(X<aznY <y)=PX <z)P(Y <vy).
Proof. Just note that {w: X (w) <z} is a m-system that generates o(X).

Corollary 4.2 The finite collection of random variables X1, Xo, ..., Xy, are in-
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dependent iff for any x1, 22, ...,x, € R

Finally, let us state here one important result without a proof even though

we will use it all the time.

Theorem 4.2 Let {F,,},>1 be a sequence of cdfs. Then there exist a probabil-
ity space (0, F,P) and a sequence of independent random variables {Xp}n>1

defined on the probability space which sdfs are {Fy}n>1.

4.3 Borel-Cantelli Lemmas

Next two results are important tools in proving strong limit theorems (for in-

stance, Kolmogorov’s Law of Large Numbers).

Lemma 4.1 (First Borel-Cantelli Lemma) Let {A,},>1 be a sequence of

events with

> P(4,) < .

n

Then

P(A, i.0.) =P(limsup 4,) = 0.

n—oo

Proof. Observe that

P(4,i0) = P(lim |J 4,

i>n
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= lim P( U A;) (continuity of P)

n—00

jzn
< nhﬁrrgo g P(A4;) (subadditivity of P)
Jj=n

= 0,

as a tail of the converging series )~ P(A,). O

Exercise 4.1 Let {X,,} be a sequence of independent Bernoulli random vari-
ables (taking values 1 or -1) with P(X; = 1) > P(X; = —1), and let S,, =

X1+ ... + X,,. Show that P(S, =01i.0.) =0.

Lemma 4.2 (Second Borel-Cantelli Lemma) Let {A,},>1 be a sequence

of independent events with

Then

P(A, i.0.) =P(limsup 4,) = 1.

n—oo

Proof. First note that

(hgs;l)pAn) = hnrgngn = LnJJQl Aj.

For any ¢ > j > n we have

P( () 4= ] @ -Py).

i>j>n i>j>n
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Taking ¢+ — oo we get

P(() 45) = [T —-P(4y)).

jzn Jjzn

Using inequality 1 — = < exp(—x) we obtain

[Ta-P4)) <exp | =D _P(4)) ] =0,

jzn i>n
that is, P((limsup,,_,,, 4n)¢) = 0. O

Example 4.2 Let {X,,},>1 be asequence of independent identically distributed

(i.i.d.) random variables with exponential distribution:
P(X, > z) =exp(—z), x>0.

Note that for &« > 0

P(X, > alogn) =n"°,

therefore,

0, ifa>1,
P(X, > alogn i.o.) =

1 if o <1.

3

That is,

P(limsup(X,/logn)) > 1) > P(X,, > logn i.0.) = 1.
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On the other hand, for any k € N,
P(limsup(X,/logn) > 1+ k™) <P(X, > (1+k ')logn i.o.) = 0.

Thus by monotonicity of P we get

n

P(limsup(X,/logn) > 1) = P(U{limsup(Xn/ logn) > 1+k7'})
k n

< ZP(Xn > (1+k ) logn io.) =0,
k

and, as a consequence,

Xn
lim sup oen — 1 as.
ogn

In general, the following result is true.

Lemma 4.3 Let {X,,}n>1 be random variables, and {an}n>1 be a sequence of

positive numbers. Suppose that for any 0 < e < 1
P(X, > (1+e¢)ay, i.0.) =0,

and

P(X, > (1—-e€)a, i.o.)=1.

Then
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Proof. Since
{w : limsup X, (w)/an > 1+ €} C{w: X, > (1 +€)ay, i.0.},

we get

Xn
P(limsup — > 1+¢) = 0.

Qn

But we also have
{w: limnsuan(w)/an >1—¢e}D{w: X, > (1-¢€ay,io}.
Therefore, it leads us to
P(limnsup f—: >1—¢€)=1.
Thus, for X = limsup,, X,,(w)/a, we obtain that for any 0 < e <1
P(X>1+¢)=0 and P(X <1—¢)=0.

Note that

PX>1)=P(|J{X>1+1/k}) <) P(X >1+1/k) =0,
k>1 k
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and

PX<1)=P(|J{X<1-1/k}) <> P(X <1-1/k)=0.
k>1 k

Therefore, P(X =1) = 1.

Exercise 4.2 Let {X,},>1 be a sequence of i.i.d. random variables with ex-

ponential distribution:
P(X, > z) =exp(—z), x>0.

Show that

n

li —_— = 8.
1rnnsup logn + loglogn s

Exercise 4.3 Let {X,},>1 be a sequence of i.i.d. random variables with nor-

mal distribution N(0, 1):

P(x, > o)~ [ " )y,

where

fly) = eV

V2r
(a) Show that
. PX,>x)
Y
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(b) Show that

lim sup 1 as.

Xn
n o 2logn
Exercise 4.4 Let {X,,},>1 be a sequence of i.i.d. random variables with Pois-

son distribution with parameter \:

Aw
_ —A
(a) Show that
X **gP(Xn>n)§A—
n! n!
(b) Show that
lims Xn 1 as
imsup———— = .
P logn/log(logn)

4.4 Tail o-field. Kolmogorov’s 0-1 Theorem

Let {X,}n>1 be a sequence of random variables. For any 1 < m < k < oo we

denote

Exercise 4.5 Show that A = |J;2, F} is a field, and F{° = o(A).

Definition 4.4 The tail o-field T is defined as

T=(\Fr
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Example 4.3 The following events belongs to the tail o-field:
o Ay ={>, X, converges}.

o Ay ={X, €I, i0.}for I, € B(R). Note that if {X,,},>1 are independent
then

P(A) =0 Y P(X, €1,) < 0,
P(4) =1 ) P(X,€l,)=oc.

That is, the probability of As can assume only two values: 0 or 1.
o As = {limsup, X, < oo}.
o Ay = {limsup, (X1 +... + X,,)/n < oo}
o As = {limsup, (X1 + ...+ X,,)/n < c}.
o A ={(X1 + ... + X»)/n converges}.
o A; = {limsup, (X1 + ... + Xp)/bp, = 1} for by, 1 00

Example 4.4 The following event

B = {lim(X; + ... + X,,) exist and is less than c}

does not belong to the tail o-field.

Theorem 4.3 (Kolmogorov’s 0-1 Law) Let {X,}n>1 be a sequence of in-
dependent random variables, and let A € T. The probability of A can take only

the values 0 or 1.
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Proof. Note that A € F7°, and there exist sets A,, € F}* such that P(AAA,,) —

0 as n — oo (show it!). We have then

P(A,) — P(4), P(A4,NA) — P(A).

But A, € F{" and A € F54, therefore, A and A, are independent. Hence we
get,

P(A,NA) = P(A), and P(4, N A) = P(4,)P(A) — P(A)%

That is, P(4) = P(A)?, and, as a consequence, P(A) =0 or 1.

Exercise 4.6 Show that for any A € F7° there exist sets A,, € F' such that

P(AAA,) — 0 as n — oo.

Exercise 4.7 Show that if X is measurable with respect to the tail o-field
which is generated by a sequence of independent random variables, then there

is a constant ¢ such that P(X =¢) = 1.
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Chapter 5

Expectation

5.1 Expectation of Simple Random Variables

First we introduce the expectation for simple random variables. Recall that X

is a simple random variable if it can be presented in the following form:

X = iailAi,
i=1

where |a;| < oo, and > | A; = Q.

Definition 5.1 Define for simple random variable X the expectation as

E(X)(= /XdP) = aP(4;).
i=1

Properties of the expectation of simple random variables.
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e E(1)=1, E(l4)=P(A).
e If X >0, then E(X) >0
o (linearity) E(aX + fY) = aE(X) + SE(Y).

Proof. Let X =37 a;la, and Y = 37" bj1p;. Then

aX +8Y = (aa; + Bb;)1a,5,.
i
Thus
E(@X +8Y) = Y (aa;+ Bb;)P(A;B;)

4,J

= ZaaiP(AiBj) + ZﬁbjP(AiBj)

4,J (Y]

zn: Zm: (AiB; +ﬁZb ZPAB)
Z ijP(Bj)
oBE(X

)+ BE(Y).

O

e (monotonicity) If X <Y then E(X) <E(Y).

e (independence) If X and Y are independent, then E(XY) = E(X)E(Y)

(prove it!).

e [E(X)| < E(1X])
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Proof. Just note that

|E(X)| = |Z%‘P(Ai)| < Z la:|P(A;) = E(]X]).

5.2 Expectation (Lebesgue Integral)

We know that any nonnegative random variable X from (Q, F,P) can be ap-
proximated by a sequence of nonnegative simple random variables X, such that

for every w € Q X,,(w) T X (w). This allows us to define the expectation of X.

Definition 5.2 Define for nonnegative random variable X the expectation as
E(X) =1limE(X,),

where { X, }n>1 is a sequence of nonnegative simple random variables X,, such

that for every w € Q X, (w) T X (w).

First note that the limit exists (maybe +00) because E(X,,) is monotone in-
creasing. But we also have to show that the expectation of X does not depend
on the choice of the approximating sequence. That is, if X, (w) T X(w) and
X (w) 1+ X (w) then

limE(X,) = imE(X)).
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Lemma 5.1 Let X,, and Y be nonnegative simple random variables, and

X, 1 X >Y.

Then

lim E(X,,) > B(Y).

Proof. Let € > 0 and

A, ={w: X, >2Y —€}.

Note that A4, T Q and

Xn=X,l4, —i—anA% > Xpla, > (Y —€)lg,.

Therefore,

E(X,) > E((Y —ela,) = B(Yla,)-eP(4,)

— E(Y) - E(Y1a) - P(4,)

Y

E(Y) — CP(A%) — e,

where C = max, Y(w). Since € is arbitrary and P(AS%) — 0, the proof is

finished. 5

Exercise 5.1 Show that this lemma implies well definition of E(X), that is,

limE(X,) = limE(X))).
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Exercise 5.2 Consider random variable

X = ZaklAka

k>1

where a; > 0 and ZkZI A = Q. Show that

E(X) =) a;P(Ap).
k>1
Definition 5.3 Define for random variable X the expectation as

E(X)=EX")-EX"),

if at least one of E(X™T) and E(X ™) is finite. The expectation of X is said to

be finite if both E(XT) and E(X ™) are finite (or E(]X|) < 00).

5.3 Properties of Expectation

Let us give now some properties of the expectation of arbitrary random variable

X.

e Let ¢ # 0, and let E(X) exist. Then E(cX) also exists, and

E(cX) = cE(X).

Proof. We know that this true for simple random variable. Now let us
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assume first that X > 0 and ¢ > 0. Let X,, 1 X, where X, are simple

random variables. Then cX,, T cX, and

E(cX) = lirrln E(cX,) = climE(X,) = cE(X).

n

In case of arbitrary X we need to employ the representation X = XT—X .

(DO lt') O

(monotonicity) Let X <Y, then E(X) < E(Y).

Proof. Again we really need to show it only for nonnegative X and Y,
that is, when 0 < X <Y. Let X,, T X and Y,,, T Y. For any fix n by

Lemma [5.1] we have

E(Y) =limE(Y,,) > E(Xy),

and therefore,

E(Y) = im E(Y) > lim E(X,) = E(X).

Now, note that in the general case

X<Y=X"<Y", and X >Y".
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By the first part we have

E(X*) <E(Y"), and E(X~) > E(Y "),

and by the definition of expectation we obtain

E(X) < E(Y).

(|
o If E(X) exists then |E(X)| < E(|X])

Proof. Just note that —|X| < X < |X|, therefore, by the first two prop-
erties we get

—E(X]) < E(X) < E([X]).

O

o If E(X) exists, then for any event A from F E(X1,4) exists. If E(X) is

finite, then E(X1,4) is also finite.

Proof. Note that (X14)T = X714 < XT and (X14)” = X140 < X,

so by the monotonicity we get the needed result. 5

e (additivity) If X and Y are nonnegative or with finite expectations, then

E(X +Y) = E(X) + E(Y).
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Proof. Let us prove it for nonnegative random variables. Let X, and Y,,

be approximating sequences of simple random variables, then observe that

E(X, +Y,) = E(X,)+E((Y,),

Xn+ Yt X 4Y,

E(X, +Y,) 1 E(X +Y),E(X,) 1 E(X), and E(Y,,) 1 E(Y).

O

Definition 5.4 We say that a property holds almost surely (P-almost surely,
P-a.s, a.s.) if there is a set N with P(N)) = 0 such that the property holds for

every point outside N .

Now we will present some properties of integrable random variables that

holds “almost surely”.

e If X =0 a.s., then E(X) =0.

Proof. Assume that X > 0. Let X, be approximating sequence of simple
random variables. If X,, = > ap,14, < X, and 2y, # 0, then P(A4;) = 0,

and, as a result, E(X,) =0, and E(X) =limE(X,) =0. 5

o If X =Y a.s. and their expectation are finite, then E(X) = E(Y). (Prove

it!)

e Let X >0, and E(X)=0. Then X =0 as.
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Proof. Define
A={w: X(w) >0}, A,={w:X(w)>1/n}.

Obviously

0< X1y, <X1y<X,

and by monotonicity we get
0<E(X14,) <E(X)=0.

But

0=E(X14,) > ~P(A,).
n

That is, P(A,) = 0 for all n. But A, T A and by continuity of the
probability

P(A) = lim P(4,) = 0.

O

Let X and Y be random variables with finite expectation. If for all A € F

E(X14) <E(Y1,), then X <Y as.

Proof. Define

A=A{w: X(w) > Y (w)}.
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For this event we have

E(Y14) <E(X14) < E(Y14).

That is, E(X14) = E(Y14), and by linearity E((X —Y)14) = 0. By the
previous property (X —Y)1l4 = 0 a.s. Therefore, 0 = P((X —Y)14 #

0) = P((X — Y)14 > 0) = P(4).

5.4 Taking Limits under Expectation Sign

Theorem 5.1 (Monotone Convergence Theorem) Let Y, X, X1, Xo, ... be
random variables.

(1) If X, > Y for alln, E(Y) > —o0, and X, (w) T X(w) for every w, then

E(X,) 1 E(X).

(2) If X, <Y for alln, E(Y) < 00, and X, (w) | X(w) for every w, then

E(X,) | E(X).

Proof. Note that (2) follows from (1) if we substitute the random variables by
their negatives, so we need to prove only (1).
First consider case when Y > 0. For every k > 1 define { X, } as an approx-

imating X}, sequence of simple random variables. Define Z,, = maxi<r<n Xnk.
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Thus, we get the following diagram:

X7 £ X2 < X3 < - < X, < < X
VI VI VI VI
VI VI VI VI
Z3 Xai X32 X33 X3k
VI VI VI VI
Zy Xo1 Xa2 Xo3 Xoy,
VI VI VI VI
Z1 X1 X12 X13 X

Therefore, we have

Ln-1<Zp,= max X, < max X = X,,.
1<k<n 1<k<n

Let Z = lim,, Z,,. Since for 1 <k <n

which means that Z = X. Since Z,, is a “simple approximation” of Z, we get
E(X)=E(Z)=lmE(Z,) <lmE(X,) < E(X).

(Note that the last inequality is obvious—why? Also why do we need here
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Y > 07)

Now let us look at the general case. If E(Y) = oo, then by monotonicity
E(X) = oo also. Now if E(Y) < oo, then E|Y| < oco. Then X,, —Y > 0, by the
first part

E(X, —Y) 1 E(X — Y),

then by linearity

E(X,) -E(Y) 1 E(X) - E(Y),

and, since E(Y) < co we have

E(X,) T E(X).

O

Exercise 5.3 Show that convergence for every w in the theorem can be substi-

tuted by a.s. convergence.

Corollary 5.1 Let {X,}n>1 be a sequence of nonnegative random variables.

Then

Theorem 5.2 (Fatou’s Lemma) Let Y, X1, Xs, ... be random variables.

(1) If X, > Y for alln, and E(Y) > —oo, then

E(liminf X,,) < liminf E(X,,).
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(2) If X,, <Y for alln, and E(Y) < oo, then
limnsup E(X,) < E(limnsup X5).
(3) If |Xn| <Y for all n, and E(Y) < oo, then
E(lirrilinf X,) < limninfE(Xn) < limnsup E(X,) < E(limnsup Xn).

Proof. We really need to prove only (1). Define Z,, = inf,,>, X,,. Then
liminf, X, = lim, inf,,>, X,, = lim, Z,, and Z,, 1 liminf, X,,. By the mono-

tone convergence theorem we obtain
E(liminf X,,) = E(lim Z,,) = lim E(Z,) = liminf E(Z,,) < liminf E(X,,),

because obviously Z, < X,,.

Exercise 5.4 Consider the probability space ([0, 1], B([0, 1]), A). Let X, (w) =

n%1,1 /n- Check the Fatou’s lemma for the random variables.

Theorem 5.3 (Dominated Convergence Theorem) Let Y, X1, Xo,... be
random variables such that | X,| <Y for all n, E(Y) < oo, and X,, - X

a.s. Then E(]X|) < co and as n — oo

E(X,) = E(X),
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and

E|X, — X| — 0.

Proof. Since liminf, X, = limsup, X, = lim, X,, = X by Fatou’s lemma we

have (with = instead of <)
E(X) = E(liminf X,,) = liminf E(X,,) = limsup E(X,,) = E(limsup X,,) = E(X),

that is, E(X,,) — E(X). The second equation can be obtained by considering
| X, — X| and observing that it is dominated by 2Y.

Corollary 5.2 LetY, X1, Xs, ... be random variables such that | X,,| <Y for all
n, E|Y|P < oo forp>0, and X, = X a.s.. Then E|X|P < 0o and as n — o0

E|X, — X[? > 0.

Theorem 5.4 Let X and Y be independent random variables with finite expec-

tations. Then E|XY| < oo and
E(XY) = E(X)E(Y).

Proof. Let us prove it for nonnegative X and Y (the general case then can be

done via the standard representation X = X+ — X 7). Let

k
Xn = Z Elk/ngx<(k+1)/m
k>1
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and

k
Y, = Z ﬁlk/n§Y<(k+1)/n-
E>1

It is easy to see that by the dominated convergence theorem we have
lIimE(X,,) = E(X) and limE(Y,,) = E(Y).
By independence we also have

km
EX,Y, = Z FE[lk/n§X<(k+1)/n1m/n§Y<(m+1)/n]

Finally, note

IN

EX|Y - Y,|) + E(Y,|X — X,.|)

IN

%E(X) + %E(Y) 0.

That is, B(XY) = lim, E(X,,Y;,) = lim,, E(X,,))E(Y,) = E(X)E(Y) 5

Exercise 5.5 This proof is a good illustration of a typical application of the
dominated convergence theorem. However, the right way of doing it is via
simple random variable approximations that are introduced in Theorem [3.2]

Note that a “simple” approximation is less accurate, but it is monotone. Prove
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the theorem using the simple random variable approximation.

5.5 Uniform Integrability

Now we provide a more delicate condition that allows us to take limits under

the expectation sign.

Definition 5.5 We say that a family of random variables {X;}1er is uniformly
integrable iff

sup E(|X¢[1x,|>c) = 0, as ¢ — oo.
t

Exercise 5.6 Show that “|X,| < Y,E(Y) < co” makes the family {X,},>1

uniformly integrable.

The next theorem shows what we really need to have to obtain the implica-

tion of the Fatou’s lemma.

Theorem 5.5 Let {X,,}n,>1 be uniformly integrable.

(1) Then
E(liminf X,,) < liminf E(X,,) < limsup E(X,,) < E(limsup X,,).
(2) If X, = X a.s. then E(X) < 0o and as n — o0

E(Xy) = E(X),
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and

E|X, — X|—0.
Proof. (1) For every ¢ >0
E(X,) =E[X,1x, <] +E[X,lx,>c
and for any € > 0 we can find ¢ such that
sup [E[Xnly,>]| <e.
Therefore, for such ¢
hmnsup E(X,) < hmnsup E(X,1x,<c) +e.
By Fatou’s lemma and by observing that X, 1x,<. < X, we get

limsup E(X,,) — e < limsup E(X,1x,<c)
< E(limsup X, 1x,<c)

n

< E(limsup X,,).

Since € is arbitrary, we obtain that lim sup,, E(X,,) < E(limsup,, X,,). In similar
way we can prove E(liminf, X,) < liminf, E(X,,).

(2) Take a look at the proof of the dominated convergence theorem.
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Theorem 5.6 Let 0 < X, — X a.s., and E(X,) < co. Then E(X,) —

E(X) < oo if and only if the family {X,}n>1 is uniformly integrable.
Exercise 5.7 We already have established “if” part, prove the “only if” part.

Lemma 5.2 If {X, },>1 be uniformly integrable, then
s?lp E|X,| < oco.
Proof. Just note that
sup E|X,| = sup [EllXallx, <d + B[l Xal11x, 5]

and let ¢ be large enough to make sup,, E[|X,|1|x, |>c] < 1, then sup,, E[X,| <
c+1. g
But sup,, E|X,,| < oo is not enough for the uniform integrability. We need

a bit more.

Lemma 5.3 Let {X,}n>1 be integrable, and let G(-) be a nonnegative increas-

ing function such that lim; G(t)/t = co. If
sup E[G(|1 X,,|)] = M < o0,

then { X, }n>1 is uniformly integrable.

Proof. For any (large) A we can find c large enough to guarantee G(t)/t > A if
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t > c¢. For that ¢ we have

| X
sup E[Xullix, 5 = sup E[G(Ian)m Lix, >

) M
< ZSWECIXDL x> <

i.e. it can be made as small as we want.
Example 5.1 For instance, G(t) = [t|'T¢ for € > 0 fits the description.

Exercise 5.8 Give an example of { X}, },,>1 for which sup,, E|X,,| < oo, but the

family is still not uniformly integrable.

5.6 Inequalities for Expectations

Proposition 5.1 (Chebyshev’s Inequality) Let X be nonnegative random

variable. Then

=

P(X >e¢) < (X),

€

in particular, for any random variable X we have

=

(X?)

e

P(|X]|>¢) <

and

E(X —EX)? Var(X)
2 - 2

P(IX —E(X)| > ¢) <

€ €
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Proof. Just observe

E(X) > E(X1xs) > eE(lxse) > eP(X > ¢).

O

Proposition 5.2 (Cauchy-Shwarz’s Inequality) Let X and Y be random

variables with E(X?) < oo and E(Y?) < co. Then

(BIXY)? < E(X?)E(Y?),

Proof. When E(X?) =0 or E(Y?2) = 0 the inequality is obvious (still, show it!).
So suppose that both E(X?) > 0 and E(Y?) > 0. First note that 2|XY| <

X24+Y? therefore, E|XY| < oo. Now, let us look at the quadratic polynomial:

p(t) = E(|X|t +|Y])? = E|X|?? + 2E|XY |t + E[Y|* = A? + 2Bt + C.

Since p(t) > 0, we get B> < AC. 0

Definition 5.6 A Borel function f : R — R is said to be convex iff for any y

there is a number a(y) such that

f(x) > f(y) + (z —y)a(y)

for all x € R.
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Proposition 5.3 (Jensen’s Inequality) Let f be a conver Borel function,

and let X be random variables with a finite expectation. Then

f(E(X)) < E(f(X)).

Proof. By convexity we have (assuming z = X, y = E(X))

fF(X) = FEX)) + (X — E(X))a(E(X)),

and after taking the expectation we obtain Jensen’s inequality.

Proposition 5.4 (Lyapunov’s Inequality) If 0 < s <r, then

(EIX ") < (BIX|)Y".

Proof. Cousider random variable | X|*, and apply Jensen’s inequality to convex

function f(-) = |- ["/*. o

Proposition 5.5 (Holder’s Inequality) Let X and Y be random variables

with E|X|P < 0o and E|Y |7 < 0o for some p,q>1,1/p+1/q=1. Then

E(IXY]) < (E|X[")V/P(E[Y|*)Y/1.

Proof. If E|X|P = 0 or E|Y|? = 0, the inequality is trivial. So, assume that

both E|X|? and E|Y|? are positive. Using the fact that e” is convex one can
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show that for any a,b > 0 we have

P
ab< L+ . (5.1)
q
Let
RY Y]
= d b == .
CTEXp e T EY e
That is, we have
| XY 1 X P +l Y 4
(B[X|P)V/e(E[Y|0)e = p [(BIX[P)VP] g [(B[Y]7)!/a
Taking expectation we get
E|XY|

1.
(E[X[P)/P(E[Y|a)/a =

O

Proposition 5.6 (Minkovski’s Inequality) Let X and Y be random vari-
ables with E|X|P < oo and E|Y|P < oo for some p > 1. Then E|X + Y|P < 00
and

(EIX +Y[")/P < (BIX|P)'/7 + (E[Y|P)/7.

Proof. Using convexity of | - [P one can show (do it!) that for any a,b > 0 and
p > 1 we have

(a+b)P < 2”71(&7” + bP),
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i.e., we have E|X + Y|P < c0.
When p = 1 the inequality is trivial. Consider the case when p > 1. Since

p — 1 = p/q, by Hélder’s inequality we have

E|X +Y|? = E[X+Y|X+Y|P/

IN

E[X|| X +Y|P/1+ E|Y||X + Y|P/4

IN

(EIX[P)YP(EIX + Y)Y + (B|YP)VP(BIX +Y[P)!/

= [BIXP)7 + (Y P)/PI(ELX +Y]) e

By dividing the left and right sides of the inequality by (E|X + Y |?)'/9 we get
the result. 5
That is, if we ignore a.s. difference between random variables with finite

p-moments, the function d(X,Y) = (E|X — Y|?)'/? is a metric.

5.7 Radon-Nikodym Theorem

Definition 5.7 We say that a probability measure Q on (2, F) is absolutely

continuous with respect to P if

P(A)=0 = Q(A)=0.

Proposition 5.7 Let X be a nonnegative random variable with E(X) = 1.

Then

Q(4) = E(X14)
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18 a probability measure and it is absolutely continuous with respect to P.

Proof. Consider first a simple random variable X = >")'_, xx1a,. If P(4) =0
then

E(X14) =) axP(A4:NA) =0.
k=1

Thus the proposition holds if X is a simple random variable. Now for an arbi-
trary X first we construct a sequence of simple random variables X,, 1 X the

by the monotone convergence theorem for A with P(A) = 0 we get

Q(A) = B(X14) = E( lim X,14) = lim E(X,14) = 0.

The converse is also true (but much harder to prove) and it is called Radon-

Nikodym Theorem.

Theorem 5.7 (Radon-Nikodym Theorem) If a probability measure Q on
(Q, F) is absolutely continuous with respect to P then there exist a nonnegative

random variable X (called Radon-Nikodym derivative) with E(X) = 1 such that

Q(4) = E(X14).

5.8 Change of Variables in a Lebesgue Integral

Theorem 5.8 (Change of Variables in a Lebesgue Integral) Let X be a

random variable with probability distribution PX. If h is a Borel function and

IThe probability measure Px is defined on (R, B) by Px(B) = P(X € B), where B € B.
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for A € B either of the integrals,

/h(x)PX(d:r):/ 1a(x)h(z)Px (dz)
A

R

or

J o MR () = B [l (X )]

exists then

/ h(z)Px (dz) = / h(X ()P (dw). (5.2)
A

X-1(4)

Proof. First consider case when h(x) = 1p(z), where B € B. Observe that

X~YA)NX~YB) = X"1(AN B). Therefore,

/1B(I)Px(d$):/IA(I)lB(ZE)Px(dI):/1AB(I)Px(d:E):Px(AB)
A R

R

=P(X (AB)) = E [lx-1(ap)] = E [Ix1(a)lx-1(5)]

= / 15(X (w))P(dw).
X-1(4)

Now, if we have (52]) for indicators, then we have it for nonnegative simple
random variables, and, therefore, we also have (5.2) for nonnegative random
variables. The general case is treated as usual via the representation h = hT —
h™. O

In particular,
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i.e., to compute the expectation it is not necessary to know P, knowing the

distribution function Fx is enough.

Exercise 5.9 Suppose that

Fxa) = [ " )y,

where fx is a non-negative Riemann-integrable function. Show that the Lebesgue-

Stieltjes integral

/ h(z)Fx (dx)
R

is equal to the Riemann integral

+oo
/ h(z) fx(z)dx

for any non-negative Borel function h.

5.9 Product Spaces and Fubini’s Theorem

Definition 5.8 By the Cartesian product of two arbitrary sets A and B, de-

noted by A x B, we mean the set of all ordered pairs (a,b), a € A, b € B.

Let us consider two measurable spaces with two a—ﬁnitﬂ measures (1, F1, 1)
and (Qg, Fa, u2), and a measurable space (1 x Qo, F; ® Fa), where F1 ® Fo =

o({A1 x Ay : Ay € F1, Az € Fa}), that is, the smallest o-field that contains the

2A measure p is said to be o-finite if Q can be partitioned into >; Aj in such way that
u(A;) < oo for all 3.
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set of rectangles with measurable sides.

Theorem 5.9 There exists the unique measure p o defined on (1 xQa, F1®

F3) in such a way that

1 @ pa(Ar X Ag) = pu1 (A1) pa(Az),

where Ay € F1 and Ay € Fs.
The product space is the following triple (Q1 x Qa, F1 ® Fa, 1 @ pia).

Theorem 5.10 (Fubini’s Theorem) Let f(-,-) be a F1 @ F2-measurable func-

tion on 1 x Qo such that

/ | f (w1, wa)|dpr @ po < 00,
Q1 xQs

Then the integrals le |f (w1, ws)|dpr and sz | f (w1, w2)|dpse
e are defined for all w1 and ws,

o are respectively Fo- and Fi-measurable functions with

pafions [ |for,wa)ldin = oc} =0,
Q1

and

pn{on : /Q 1 (w1, w2)|dps = 00} = 0.
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e and

w17w2)d,u1] dpio

/ flwr,w2)dps @ po = / {/
Ql XQQ Q2 Q1
B x/f;l |:/Qz

f(
f(w17w2)d#2] dpa.

Corollary 5.3 If

/ { |f(w1,w2)|du2} dpy < 0o
Q1 Qo
the Fibini’s theorem will hold.

Example 5.2 Let X be a non-negative random variable on (2, 7, P). Consider

(Q X R+,F®B(R+>,P ®)\) and
flw,z) =14(w,x), where A = {(w,z): 0 <z < X}.

Note that

/ flw,z)d\ = X (w)
Ry

and

flw,2)dP =P(X > z).
Q

Therefore, by Fubini’s theorem we obtain

PoMNA) = [ X(w)dP =E(X)
Q

/]R+ P(X > z)d\ = /O+OOP(X > z)dz.
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Example 5.3 Consider a pair of random variables (X,Y) and suppose that

their joint distribution has a density, i.e.

P((X,Y) € B) = /B Fxv(@,y)dedy,

where B € B(R?) and the integral is taken with respect two-dimensional Lebesgue
measure.

Note that for A € B(R) by Fibini’s theorem we get

P(X € A)=P((X,Y) € AxR) = . RfXY(%y)dwdy Z/A [/R fXY(iCay)dy] dzx.

That is, the densities of X and Y exist and they are given by

fx(a) = /R Fxv (@, y)dy

and

fY(x):/RfXY(‘T,y)dI.

According to Corollary ] the random variables X and Y are independent

iff for any z,y € R
PX<aznY <y)=PX <z)P(Y <vy).

Now one can show the following is true.

Corollary 5.4 If a joint density fxvy (z,y) exists then the random variables X
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and Y are independent iff

Ixv(z,y) = fx(z)fy(y)

almost surely with respect two-dimensional Lebesgue measure.

Proof. Sufficiency. Just note that

PX<znY <y = / fxy(t,s)dtds
(—o0,z]x (—00,y]

_ / Fx(6)fy (s)dtds
(—o0,a]x (~o0.1]

d s)ds
| moa]
= P(X<aP(Y <)

Necessity. If X and Y are independent then

P(X<znY <y)=P(X <2)P(Y <y).

That is, by Fubini’s theorem

LWMAQﬁAth®%
= / fx (&) fy(s)dtds.
(—00,z] X (—00,y]

/ fxy(t, s)dtds
(—00,z] X (—00,y]
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Therefore, for any B € B(R?) we have that
/ fxy(t, S)dtds = / fX (t)fy(s)dtds
B B
which gives us (see page[61) that
fxy(@,y) = fx (@) fy(y)

almost surely with respect two-dimensional Lebesgue measure.

Exercise 5.10 Consider the following product space
([0,1] x [0,1], B([0, 1]) @ B([0,1]), A @ p),

where A is the Lebesgue measure, and p just counts the number of elements in
a set. Let A be a diagonal {(x,y) € [0,1] x [0,1] : z = y}.

a) Argue that A € B([0,1]) ® B([0, 1]).

/ [/ 1A(x,y>dA] s
[0,1] [0,1]
/ / 1A(I,y)du] dA.
[0,1] [0,1]

¢) Why do you think Fubini’s Theorem does not hold for this example?

b) Calculate

and
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5.10 Variance, Covariance and Covariance

Matrix

Definition 5.9 Let X be a random variable with EX? < co. The variance is
defined by

Var(X) = E(X - EX)? = E(X?) - (EX)2

Definition 5.10 Let X,Y be random variables with EX? < 0o and EY? < oo.

The covariance of X and Y is

Cov(X,Y) = E[(X - EX)(Y — EY)] = EXY — EXEY.

Exercise 5.11 Find the variance for uniform, normal, Poisson, and binomial

distributions.
Properties of variance.
e Var(X) > 0.
e Var(c) =0, where ¢ is a constant.
e If Var(X) =0, then P(X =¢) =1 and ¢ = E(X).
e Var(cX) = ¢*Var(X).
e Var(aX +bY)? = a*Var(X) + b?>Var(Y) + 2abCov(X,Y).

e If X and Y are independent, then Cov(X,Y) = 0 (because of Theo-

rem [5.4]), and Var(X +Y) = Var(X) + Var(Y).
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Exercise 5.12 Give an example of two dependent random variables which co-

variance is equal to 0.

Definition 5.11 Let X = (X1,...,X,)" be a random (column) vector with
EX? < oo fori=1,...,n. Vector p = (EX1,...,EX,,)" is called the expec-

tation of X. The covariance matrix of random vector X is the following n x n

malriz:
Sx = BX-p)X-p)
= BE(XX")—pp’
Var(X1) Cov(X1,X5) ... Cov(Xy,X,)
COV(XQ,Xl) Var(Xg) . COV(XQ,XH)
Cov(X,,X;) Cov(X,,X3) ... Var(X,,)

Properties of covariance matrix.

e If ais an n-dimensional (column) vector of real numbers, then Var(a' X) =

a'Yxa.

e The covariance matrix 3x is positive-semidefinite and symmetric.

Proof. Just observe that Cov(X;, X;) = Cov(Xj, X;) and for any a € R,

a'Sya= Var(a'X)>0. o
o 2X+a = Ex.
e Yax = AXxAT, here A is an m x n matrix of real numbers.
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e If rank(Xx) < n, then there exists vector of real numbers a # 0 such that
with probability one a' X = a 'y, that is, with probability 1 the values of

X belong to a hyperplane.

Proof. rank (¥x) <n

& det(X¥x) =0

< dJa € R", a # 0 such that ¥xa=0

& Ja € R", a# 0 such that a’' ¥xa =0
& Ja € R", a # 0 such that Var(a' X) =0

& JaeR", a#0suchthat Pla' X =a'p) =1

Definition 5.12 Let X,Y be random wvariables with 0 < Var(X) < oo and

0 < Var(Y) < co. The correlation coefficient of X and Y is

Cov(X,Y)

\/Var(X)Var(Y)

p(X,Y) =

Properties of correlation coefficient.

o [p(X,Y)| <1

Proof. By Cauchy-Shwarz’s inequality (5.2]) we have

[E(X —EX)(Y —EY)P? <E(X —EX)’E(Y —EY)?.

O

e p(X,Y)|=1<% Ja,be R such that P(X =aY +b) =1
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Proof. (=) Consider the following two-dimensional random vector £ =
(X,Y)T. Since |p(X,Y)| = 1, we get that det(X¢) = 0, that is, rank(Z¢) <
2. Therefore, 3¢ # 0,d # 0 € R (why are both not equal to zero?) such
that P(cX +dY = cEX + dEY) = 1, and P(X = —(d/¢)Y + (cEX +

dEY)/c) = 1.

Exercise 5.13 Let X,Y be random variables with 0 < Var(X) < oo and

0 < Var(Y) < oo, and P(X = aY +b) = 1. Show that p(X,Y") = sign(a).
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Chapter 6

Characteristic Functions

6.1 Definition and Basic Properties

Definition 6.1 The characteristic function (CF) of a random variable X with

distribution function Fx is the complex valued function of t € R given by

ox(t) = Ee™™
= Ecos(tX) + (Esin(tX)

= /Rcos(t:v)FX(d:C)—l—i/sin(t:v)FX(dx).

R

First, note that ¢x(t) always exists because |e?X| = 1. Second, when we
deal with discrete and absolutely continuous distributions we use more practical

formulas:
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o (discrete)

ox(t) = Z e rpy,

a.].l T

o (absolutely continuous)
ox(t) = [ e fants
R

Example 6.1 (Standard Normal) Let X be a random variable with the stan-
dard normal distribution. Recall that the pdf of the standard normal distribu-

tion is given by

First let us show that for n = 0,1, ...

EX?" = /00 22 f(x)dx = (2n — 1)

— 00

Indeed, note that via integration by parts one has

1 e 2
EXQn _ - $2n€7x /de
\/27T [oo
1 < on —z%/2
= — 22 d(—em " /?)
\/27T /—oo

I oono1 — 2/2rroo 1 /OO o2n—2 —x2/2
= ———=g" e " +(2n—-1)— e Md.
V2T —o00 ( )\/27r oo
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Thus, EX?" = (2n — 1)EX?"~2 and EX? = 1. Therefore,

EX? =2n—1)x---x1=(2n— 1),

Now, since EX?"T1 = 0 we get

ox(t) = % /°° it /2 g
T J—c0
R (0 L Gl A S
= l;) x /_Oox 271_6 d
o (zt)Q" o (Zt)2n
= (271—1)”:
7;3 (2n)! 7;3 (2n)!!
- Yo (3) @
42/2.

Let us do it in a different way. Observe that again by integration by parts

Px (1) \/_ / et /2 dy

zxtd 7x2/2
V2 / )

- ¢ / mt —z /de

That is, the characteristic function of the standard normal distribution satisfies

the following differential equation:

P (t) = —tox(t), with ¢x(0) = 1.

96



Solving the equation we get

bx(t) =e /2.

Exercise 6.1 Find the characteristic functions of uniform, Poisson, and bino-

mial distributions.

Properties of characteristic functions.

e $(0)=1

o) <1

o(—t) = WH If ¢(-) is a real function, then it is an even function.

If X is symmetric (that is, X and —X have the same distribution), then

¢x is an even real function.

The characteristic function ¢(t) is uniformly continuous on R.

Proof. For any t,h € R we have

6t +h) = o) = [Be" (¥ — 1)
< EleitX(eihX _ 1)|

= E|"* -1)|.

Since [e?*X — 1| — 0 with probability 1 as h — 0, [e?X — 1| < 2, and

IRecall the complex conjugate a + ib = a — ib.
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le?"X — 1| does not depend on t, by the dominated convergence theorem

|¢(t + h) — ¢(t)] — 0 as h — 0 uniformly for all t € R. 5

o duxiv = eox(at). For instance, immediately we get that if X is a

normal random variable with mean g and standard deviation o, then

bx(t) = eth=o" /2, (6.1)

e Let X and Y be independent random variables. Then

dx1v(t) = dx(t)dy (1)

Proof. Because of independence

¢X+Y (t) _ Eeit(X+Y) _ EeitXeitY _ EeitXEeitY _ ¢X (t)(bY (t)

O

The last property provides us with the main motivation for the introduction

of characteristic functions. Random variables are measurable functions on a

sample space. Adding two or more random variables or taking linear combina-

tions are the most basic operations that we can apply to a collection of random

variables. So it is not surprising that sums of random variables play an im-

portant role in applications (think about the sample mean or sample variance).

But the distribution of sum of two independent random variables is given by the
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convolution of the distributions. Convolution is a relatively complex operation.
The switch to characteristic functions allows us to substitute the operation of

convolution of distributions by product of characteristic functions.

Lemma 6.1 Let X and Y be independent random variable with distribution
functions Fx and Fy. Then the distribution function of X+Y is the convolution
of Fx and Fy:

For(z) = [ Pxlz=)Fy ().

Proof. By Theorem 5. (change of variables in a Lebesgue integral) and Fubini’s

theorem we have

Fxiv(z) = PX+Y <2)

= Elxiv<:

= /2 Ixtv<:Fxy(dzdy)
R

= [ i) Bt

= /Fx(z —y)Fy (dy).
R

O

Exercise 6.2 Let ¢ be a characteristic function, and ¢ > 0. Show that e¢(¢(1)—1)
is a CF as well. Hint: Let {Xy}r>1 be iid random variables, and N be an
independent of { X} },>1 random variable with a Poisson distribution. Consider

. N
random variable > ;" | X

2This random variable has so-called compound Poisson distribution.

99



Theorem 6.1 (Bochner’s Theorem) An arbitrary complex valued function
on R ¢(-) is the characteristic function of some random variable if and only if

¢(+) 1is positive deﬁnitﬂ, continuous, and ¢(0) = 1.

Exercise 6.3 Prove that any characteristic function is positive definite. Note

that the “if” part of the theorem is more difficult.
The following sufficient condition is a bit more easy to check.

Theorem 6.2 (Pdlya’s Theorem) If ¢(-) is a real-valued, even, continuous
function which satisfies the conditions

1) 9(0) =1,

2) ¢(-) is convex on Ry,

3) ¢(o0) =0,

then ¢(-) is the characteristic function of an absolutely continuous symmetric

distribution.
Exercise 6.4 Check that e~ !l is a characteristic function.

Exercise 6.5 Let Xi,...,X, be independent identically distributed random

variables with the following characteristic function:

¢(t) = exp(—[t|*),

where 0 < o < 1.

a) Using Polya’s theorem verify that ¢(-) is a characteristic function.

3A function ¢ : R — C is positive definite if any ti,...,tn € R and 21,...,2n, € C
D 0t —t5)2i%; 2 0
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b) Show that

1 n
nl/a Z Xk
k=1
has the same characteristic function as X7j.

Definition 6.2 We say that a discrete random variable has lattice distribution
if every possible value of the random wvariable can be represented in the form

a+ kh, where k =0,+1,£2,...

Theorem 6.3 (Characteristic Functions of Lattice Distributions) A ran-
dom variable X with characteristic function ¢(-) has a lattice distribution if and

only if there exists a real number to # 0 such that |¢(to)| = 1.

Proof. (=) Take tg = 2r/h. Then if p, = P(X = a + kh) we have

|6(to)] = |Zei(a+hk)topk| — |¢itoc Zeitgkhpk|

k k
= [ e = D pe| = 1.
k K

(<) If for some to # 0 we have |p(tg)] = 1, then there exists a real number «
such that ¢(tg) = e*®. Therefore, Ee(*0X~®) = 1. That is, Ecos(tcX —a) = 1
or

toX —
0= E[cos(toX — a) — 1] = —2Esin? 2= 2

This means that with probability one |sin[(toX — «)/2]| = 0, that is, the dis-
crete distribution measure of X is concentrated on the set of zeros of function

sin[(tor — a)/2]. O
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6.2 Inversion Formula and Uniqueness

Theorem 6.4 (Inversion Formula) Let ¢(-) be the characteristic function of
distribution function F(-). Consider two points a and b (a < b) at which F is

continuous. Then

1 A efitb _ efita
F(b) — F(a) = — 1i —o(t)dt
() (a) 2w Agnoo _A —it o(t)
First let us state few lemmas.
Lemma 6.2
4 sin(ax)

lim

dx = Tsi .
Am [ x = wsign(«)

Proof. Exercise. Prove that

A—o00 x

A .
lim / de =7/2
0

using the fact that fooo e *'dt = 1/x and Fubini’s theorem, but with some

caution. m
Lemma 6.3 Let

B ..
I(A, B, «) :/ Mdm.
A

X

Then uniformly for all A, B, and «

[I(A, B,a)| < C.
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Proof. First note that

A . B .
(A B.a)| < / sin(ox) ol + / sin(ax) de
0 r 0 x
_ /AQ‘ sin(z) el + /BQ‘ sin(x) i
0 z 0 z
< 2sup / sin(z) dx
220 [Jo Y

Since

o(z) = /Oz sin(x) i

X

is a continuous function of z, and lim,_, . g(z) = 7/2, we can take T large

enough to guarantee that

sup |g(z)| < /2 + 1.
z2>T

Because of continuity of g we also have

sup |g(2)| < C.
0<2<T

Therefore,

[I(A, B,a)| < 2sup|g(z)| < Ch,

220

where C} does not depend on A, B, and «a.
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Lemma 6.4 For a < b consider

Then

0 r<aorxz>h»,
X(@)=9 1/2 z=aorz=>b,

1 a<z<b.

Proof. Indeed, by Lemma we have

71tb eflta t
1t(x b) it(z—a)
= — lim / i dt
2T A—oo
1 —b)) — —
_ 1 / cos(t(z b)) .cos(t(x a))dt
2T A—oo —it
A — — —
+i lim sin(t(z — b)) — sin(¢(x a))dt
2T A—oo —_A —t
I B A sin(t(z — a)) — sin(t(x — b)) "
2T A—oo —_A t

= i(sign(x —a) —sign(x — b)).

O

Theorem Proof. Since a, b are continuity points of F' we get

/ \(2)F(dz)

—ztb e—zta
/ lim / _ e dtF (dx)
A—o0 —Zt

F(b) = F(a)
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71tb eflta
= — lim // " AtF (dx)
2T A—oo

1 —1itb —ita
- — lim < / mF(da:)> S
2T A—oo —1t

We have two key steps here. First, because of Lemma and the dominated
convergence theorem we can change order of fR and lima_, . Then, by Fubini’s

theorem we can change order of integration [, and ff‘ A0

Theorem 6.5 (Uniqueness Theorem) Let F and G be distributions func-

tions with the same characteristic function. Then F(x) = G(x) for all x.

Proof. Exercise. Hint: if distribution function F' is not continuous at a, then

we can find sequence a,, | a such that F'is continuous at every a,.

Exercise 6.6 Let f : R — R be a non-decreasing function.
a) Show that f has limits from the right and from the left.
b) The point = € R is called the discontinuity point (of the first kind) of f if
limits at « from the right and from the left do not coincide. Prove that f can

have no more than countably many points of discontinuity.

Exercise 6.7 Let X;,7 = 1,2 be independent normal random variables with

mean y; and variance o?, then X; 4+ X5 has normal distribution with mean

19

w1 + p2 and variance o7 + o3.

Exercise 6.8 Let X;,7 = 1,2 be independent Poisson random variables with

mean JA;, then X; + X5 has has Poisson distribution with mean Ay + As.
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Exercise 6.9 Let ¢1, ¢2, and ¢35 be characteristic functions, and ¢1(t)pa(t) =
1(t)ps(t) for all t € R. Does it follow that ¢o(t) = ¢3(t) for all ¢ € R? Prove

it or construct a counterexample.

Exercise 6.10 Let X3, X2, and X3 be independent random variables such that
X1+ X5 and X7 + X3 have the same distribution. Does it follow that X5 and

X3 have the same distribution?

Proposition 6.1 (Inversion Formula for Z-valued RVs) Suppose random
variable X takes values from Z = {0,£1,£2,...}, and pp, = P(X = k). If ¢(*)

18 a characteristic function of X, then

1,
P =5 e g (t)dt.

Proof. Since

o(t)= > €'p;

j=—o0

we get

o0

/ e—itk¢(t)dt:/ Z e—it(j—k)pjdt: Z (/ e—z‘t(j—k)dt) pj = 2mpk,

-7 Jj=—00 j=—o0

because the integral in the brackets is 0 for k # j.

Proposition 6.2 (Inversion Formula for Integrable CFs) Let F' be a dis-

tribution function, and ¢ is its characteristic function. If

/ 6()]dt < oo,
R
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then F' is absolutely continuous, and its density is given by

f(z) = % /R e B (t)dt. (6.2)

Proof. Let us take function given by formula ([6.2)). First note that it is a

continuous function, because

|[flx+h)— f(x)] < i/ le=h — 1||(t)|dt — 0, as h — 0,
27 R

by dominated convergence theorem. Therefore, it is integrable on [a,b]. Now

by Fubini’s theorem and the inversion formula we find

/abf(x)dx = /ab % (/R eit””(b(t)dt) dx
_ % ot (/abe—mdx> dt
— Jim % /: 6(1) </abe—mdx> dt

1 A e—itb _ e—ita
= — 1 — o (t)dt
o AT / et

= F(b)— F(a)
for all continuity points a and b. That is,
F(z) = /:EOO f(x)dx
for all x € R. Since one can show that f(z) > 0 for all z, it finishes the proof.
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Exercise 6.11 Show that f(x) > 0 for all . Hint: we already proved that it

is continuous.

6.3 Characteristic Functions and Moments

Let X be a random variable. The k-th absolute moment, E|X|*, is denoted by
Br. If B, < oo then the k-th moment, EX*. is denoted by aj. Let us start with

the following lemma.

Lemma 6.5 For any k=0,1,... and x € R we have

k . :
; (iz)’ [+
w < .
¢ Z:O G = e+ D)

J

Proof. We will prove it by induction. When k£ = 0 we obviously have

, z e
e —1] = ‘/ e”dt‘ < / || dt = |x].
0 0

Now if we introduce

then one can show that

RkJrl(:C) =1 Rk (t)dt.
0
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Therefore, for x > 0 we have

k+1

|Riq1(x)] < /Om |Ri(t)|dt < /Oz (kt+ 1)!dt - (];E—f— 9!

k42

O

Theorem 6.6 Let ¢(-) be the characteristic function of random variable X with

the cdf F(-) and suppose that for some k > 0 the absolute moment By 1is finite.

Then

1. the k-th derivative ¢(¥)(t) exists and for r < k

(b(r)(t) _ /oo (iiC)Teith(d:C),

— 00

2. ¢!(0) =",

3. whent — 0

Proof. In fact, we only need to prove 1. Again we will do it by induction. When
r = 0 the statement is obvious. Assume that the formula is true for r < k. First

note that

A (t 4+ h) — o (1) /oo eilth)e _ gita
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By Lemma (the easy case when k = 0) we have |¢?*® — 1| < |hz|, and, as a

consequence,
ihx _ 1
h

(ix)reitw €

‘ S |$|r+1'

Since

/ lz|" T F(dz) < oo
R

the dominated convergence theorem tells us that

. ¢+ h) - () o eiltih)e _ gite
M h AR e

— 00

- / " (i) e P (da)

— 00

The second formula immediately follows from the first one, and Taylor’s theorem
gives 3.

But we also can prove the last statement directly. Indeed, note that for any

real tX
. e (itX) (X))
™ = cos(tX) +isin(tX) = E — + N [cos(01tX) + isin(02t X)],
; J! !
Jj=0

where 01| < 1 and |62| < 1. Taking expectation we get

= (it)! (it)"
ot) =3 Zj' EX7 + Zk—'EXk[cos(GltX) +isin(fotX) — 1.
C .

J
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Since by the dominated convergence theorem

EX"[cos(0,tX) +isin(fatX) — 1] = 0, as t — 0,

this finishes the proof.

Theorem 6.7 Let ¢(-) be the characteristic function of random variable X with
the cdf F(-). Suppose that for some k > 0 derivative ¢**)(0) exists and finite.

Then Bar, < 00.

First, let us start with case k = 1. By Fatou’s lemma and I’Hopital’s rule we

obtain

1 [¢'(2h) — ¢'(0 '(0) — @' (—2h
5'(0) = %%E[M )2h¢()+¢() 22( )
_ i [92R) = ¢'(=2h)
- ;1336{ ah ]
1
= Jim 1 [9(2h) — 26(0) + 6(~20)
) eihm_e—ihm 2
= Jim R[T] F(dz)
_ . sin hz1? 2p(d
N _hlg}JR{ hx ] v F(dz)
i 2
< - [ |75 #re
= —/x2F(dx)
R

That is, we have [, #2F(dz) < —¢"(0) < co.
Now, let us prove the general statement by induction. Assume that ¢(2k+2) (0)

exists and finite, and fBor = [, #**F(dz) < oo. Note that if B2, = 0, then
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Bak+2 = 0 as well, and we have nothing to prove. So assume that fop > 0. If

we introduce the following (cumulative distribution) function

oo LT
G()—ﬁ%/_ooy F(dy),

then using the Theorem we get

/eitzG(d:r) = L/em”a:%F(dzzr)
R Bk Jr

i?k

. . itmiIQk T
- ﬁ%/nf (i) F (dz)

= (=1)F¢R(t)/Bax

That is, (—1)%¢(*)(t)/Bas, is the characteristic function of G(-) and its second

derivative exists and finite. Therefore, employing case k = 1 we get that

/R 22G(dz) < %

Since Pogr2/B2k = fR 122G (dx), we are done.

Exercise 6.12 Show that e~*" is not a characteristic function.

Exercise 6.13 Show that if a characteristic function has a finite second deriva-

tive at O then it is differentiable everywhere.

112



6.4 Characteristic Function of Random Vectors

Definition 6.3 Let X = (X1,...,X,,)" be a random vector (column) with dis-
tribution measure Px. Then the characteristic function of X is the complex

valued function of t = (t1,...,t,)" € R™ given by

¢X (t) — EeiXTt

/ eithPx(dx).

Properties of characteristic functions.
. 5(0)=1
o [p(t) <1

e The characteristic function ¢(t) is uniformly continuous on R™.
ST
o Paxib(t) =e® tox(ATE).

Definition 6.4 Consider n-dimensional rectangle
I =[a1,b1] X [ag,ba] X -+ X [an, by)].
We say that it is a rectangle of continuity with respect to measure P (on R™) if
P(oI) =0.

Theorem 6.8 (Inversion Formula for Random Vectors) Let ¢(-) be the
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characteristic function of probability distribution measure P. Consider rectangle

of continuity I = [a1,b1] X [ag,ba] X -+ X [ay, by]. Then

P(I) = Jim / / c e e,

27‘1’ n A—oo AL —1itg

Proof. Consider function (see Lemma [G.4])

1 A —ith _ _—ita )

= — 1.
Xawl@) = 50 lim [ ——

Then by the dominated convergence theorem and Fubini’s theorem we obtain

P(I)

/ H Xllk,bk ‘Tkl dx)
R

" k=1

—Ztkbk_ Ztkak.

—ltkbk _ —ztkak
= lim / / / ¢ ek At P (dx)
n A—o0 n _Ztk

Akl

7’Ltkbk _ e*itkak T
= — hm/ / , / e™ P (dx)dt
27T " A—oo _ltk; n

Ap—1

n 7’Ltkbk _ 71tkak
= Wﬂﬁo / / U AL

O

Theorem 6.9 Let X and Y be random wvectors with the same characteristic

function. Then the corresponding distributions are the same.

Proof. Exercise.

Proposition 6.3 (Inversion Formula for Integrable CFs) Let X be a ran-
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dom vector, and ¢ is its characteristic function. If

[ lotelat < .

then the distribution of X is absolutely continuous, and its density is given by

1 —ix 't
Fx) = W/Rne 6(t)dt. (6.3)

Proof. Exercise.

Theorem 6.10 Let X = (X1,...,X,,)" be a random vector. The random vari-

ables X1, ..., X,, are independent if and only if for all t = (t1,...,t,)" € R

ox(t) = [ ox. (tr)-
k=1

Proof.

(=) Just note that because of independence

n

ox(t) = Ee X't = E [] Xt = T] EeXtr = ] o, (t).
k=1 k=1

k=1

(<) Random variables X7, Xs,..., X,, are independent if for any Borel sets

By, Bs,..., B,, we have that

P(X, € B1,X2 € By,...,X,, € B,) =P(X; € B))P(Xs2 € By)---P(X,, € By),
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or

Px(Bl X B2 X X Bn) = PXI(B1>PX2(B2) . PXn(Bn)

Let Q = Px, ® Px, ® --- ® Px, (a probability measure on (R™, B(R")).

Thus, we need to show that Px = Q. Let
m1 = {0, all closed rectangles in R"},

o = {0, all closed rectangles in continuity R"},

and
73 = {0, all closed rectangles in R"™ with P(Xy = ax) = P(Xy = b) = 0}.

Collections 71, M9 and 73 are w-systems, and w3 C o C m1. Moreover, B(R™) =
o(m) = o(m) = o(m3), because any closed rectangle can be approximated by
rectangles from m3. Therefore, by the set induction, it will be sufficient to check

that for all rectangles from 73,
I: [alabl] X [a’27b2] X X [anabn];

we have

Px(I) = [] Px, ([ax, bi])-
k=1

This is easy to verify with help of the inversion formulas for random variables
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and vectors:

1 A A n e*itkbk _ ef’itkak
Px() = — 1 t)dt
x(D) (2m)" ASse |, /AkH1 —itn o(t)
1 A A n e_itkbk _ e_itkak
- te)dt
(2m)n Agnoo A ‘/Alcl:ll —itk oxi (k)
1 n A e—itkbk _ e_itkak
= li _ ty)dt
o L, | ot

6.5 Multivariate Normal Distribution

Definition 6.5 We say that random vector X has multivariate normal distri-
bution if for any t = (t1,...,t,)" € R™ random variable X't has a univariate

normal distribution or a degenerate distribution.

Exercise 6.14 Show that if random variable X is normal then (X, X)T is a

normal vector.

Exercise 6.15 Show that if X and Y are independent normal random variables

then (X,Y)T is a normal vector.

Lemma 6.6 If X has normal distribution and A is n X n matriz then random

variable AX is normal.

Proof. Exercise.

117



Theorem 6.11 (CFs of Normal Random Vector) The following two state-

ments hold.

1. Let X be a normal random vector with mean p and covariance matriz 33,
then

B(t) = ein B2, (6.4)

2. For any vector u and positive-semidefinite symmetric matriz X there exists

normal vector X with the characteristic function (6-4)).

Proof.
1. Let us consider random variable X Tt. It has normal distribution with

mean 't and variance t " 3t. By formula (6.1 we get

¢(t) _ EeiXTt-s

s=1
= ¢XTt(1)

= exp [iuTts - tTEts2/2]

s=

—  pint—tTEt/2
2. Without loss of generality we assume that p = 0.

Case 1. If X is diagonal, that is, & = diag(o?,...,02). Then formula (6.4)

n

gives us
n n
o(t) = exp [— Z U%ti/2‘| = H exp [—aiti/ﬂ .
k=1 k=1
Now, if Xk, k = 1,...,n are independent normal random variable with mean
0 and variance 0%, then random vector X = (Xi,...,X,)" has multivariate
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normal distribution. Moreover, by Theorem [6.10) its characteristic function is

given by (G.4).

Case 2. If ¥ is not diagonal (but positive-semidefinite and symmetric) then
there exists an orthogonau matrix U such that UXU' is diagonal. Let Y be
the normal random vector that corresponds to matrix UXUT. Let X = UTY.

By Lemma [6.6] X is a normal vector, and its characteristic function is given by

ox(t) = EeiX't _ geiY " (Ut) _ dy (Ut) = ot UTUSUTUL/2 _ —t'5t/2

O

Theorem 6.12 Let X = (X1,...,X,,)" be normal random vector with covari-

ance matriz 3. Then the following three statements are equivalent.
1. Random wvariables X1, ..., X, are independent.
2. Random wvariables X1, ..., X, are uncorrelated.
3. Matriz 3 is diagonal.

Proof.
(1. = 2.) is obvious.
(2. = 3.) is obvious.

(3. = 1.) Let ¥ = diag(c?,...,02). Since

n
ST T ST 2,2 . 2,2
¢(t) — i t—t Xt/2 _ et t—> h_10ktR/2 — | | ez,uktkfcrktk/?
k=1

dthat is, U1 =UT
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by Theorem we get 1.

Theorem 6.13 Let X = (X1,...,X,,)" be a normal random vector with mean
w and covariance matriz X. Assume that det(X) # 0 then the density of X is

given by

1 Tes—1
— —(x—p) T Z T (x—p)/2
Jx) = (2m)"/2 det(%)1/2° ' (6.5)

Proof. Without loss of generality assume that means are zeros.

Case 1. If ¥ is diagonal, that is, ¥ = diag(o?,...,02), and 0,% > 0, then

rYn

X1,...,X, are independent with means 0 and variances 7. As a result,
F(x) = ﬁ 1 w2207 _ ! oG TE T ) /2.
o V2T, (27)"/2 det(X)1/2

Case 2. If X is not diagonal (but positive-semidefinite, symmetric and in-
vertable) then there exists an orthogonal matrix U such that UX U is diagonal.
Let Y be the normal random vector that corresponds to matrix USUT. Let
X = U'TY, then X is a normal vector with mean 0 and covariance matrix X.
Now, for a Borel set A € R™ with help of substitution x = U'Ty,y = Ux we

obtain

P(X e A) P(Y € U4)

fy(y)dy
UA
1

/ ey (UBUT) Ny 240
(2m)"/2det(UXUT)/2 Jy4

_ 1 —x'uT(uzu")tux/2

T (2m)/2 det(X)1/2 /Ae ( / | det(U)[dx
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_ 1 —x'u'uxz"'u'ux/2
T 202 det (D)2 /Ae dx

1 _xTx-1 /2
X X d .
(2m)"/2 det () 172 /Ae x

Note that the absolute value of Jacobian determinant of U is 1, and det(UXU ") =
det(X).

O

Exercise 6.16 Show that for any vector p and positive-semidefinite symmetric

matrix ¥ with det(X) # 0 there exists normal vector X with pdf given by (6.0)).

Exercise 6.17 Let (X1, X5)" be two-dimensional normal vector with mean

)T and covariance matrix

(1, pr2
O'% pPo102

pPoO102 0'%
Find the joint pdf.

Exercise 6.18 Let X be a normal random variable with mean 0 and variance
1, and & be a Bernoulli random variable with P(§ = 1) = P(¢ = 0) = 1/2.
Assume that X and £ are independent. Let us define random variable Y by the

following rule:

~-X, ife=1,
Y:
X, if¢&=0.

a) Find characteristic function of Y to prove that it has the standard normal

distribution.
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b) Calculate Cov(X,Y).

¢) Find a linear combination aX + bY" that is not normally distributed to prove
that (X,Y)T is not a normal vector.

d) Find a Borel set B such that P(X e BNY € B) #P(X € B)P(Y € B) to

prove that X and Y are not independent.
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Chapter 7

Convergence

7.1 Different Types of Convergence
Let {X, X,,}n>1 be a sequence of random variables on (2, F, P).

Definition 7.1 We say that {X,} converges to random wvariable X almost

surely (a.s. or with probability 1), written X, %X, if
Pw: X,(w) = X(w)] =1.

Definition 7.2 We say that {X,} converges to random variable X in proba-

bility, written X, LN X, if for any e >0

P[|X, — X| > ¢ — 0.
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Definition 7.3 We say that {X,,} converges to random variable X in L, p > 0,
L
written X, — X, if

E|X, — X|” — 0.

Definition 7.4 We say that {X,,} with cdf F,, converges to random variable X
with cdf F in distribution, written X, N X, if at any continuity point x of cdf
F

Theorem 7.1 (An Iff Condition for a.s. Convergence) Let{X,},>1 bea

sequence of random variables. Then

iff

P |sup|Xp— X|>€| =0, as n = o,
k>n

for every e > 0.

Proof. Note that

X, =5 X

< P({|X, — X| > €} 1.0.) =0 for any € > 0

< P(N,>1 Upsn (X — X[ > €}) =0 for any e > 0
& limy, P(Up>, {| Xk — X| > €}) =0 for any € >0

< lim,, P(supy>,, [Xx — X| >¢€) =0 for any € > 0.
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Proposition 7.1 Let {X,,},>1 be a sequence of random variables. If
X, — X,
then there exists subsequence ny such that
Xn, — X.
Proof. Let ny =1, and for k > 2 define
ng = inf{n:n > ny_1,P(|X,, — X| > 1/k) < 1/2*}.
It is possible, because P(|X,, — X| > €) — 0 for any € > 0. Since
> P Xy, — X[ > 1/k) < 00
k

by Borel-Cantelli Lemma we have that P({|X,,, — X| > 1/k} i.0.) = 0, that is,

Xn, 25 X. o

Theorem 7.2 (Convergence Graph) The following implications are true.

X, &% X = X, 2 X, (7.1)
L, P

X, B X=>X,-5X, p>0 (7.2)
P d

X, — X=X, —X (7.3)
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Proof. The statement (7.1)) follows from Theorem[T.Il The L, version of Cheby-
shev’s inequality gives us (T2). So, we really need to work out only the last
implication. Let F), denote the cdf of X,,, and let F' denote the cdf of X.

Consider « which is a continuity point of F. Note that for any € > 0

PX,<z) = PX,<zX,—X|>¢)+P(X, <z, |X,—X|<e¢)

IN

P(X,—X|>e)+P(X <z+e)

and

PX<z—-¢) = PX<z2z—¢|X,—X|>6)+P(X <z—-¢lX,—X|<e¢)

IN

P(X,—X|>¢)+P(X, <x)
That is, for any € > 0 we have
Flx—¢)—P(|X, — X|>¢) < F,(z) < F(zx+¢) +P(|X, — X|>¢).
Taking limit with respect to n gives us
Flz—¢) < limninf F,(z) < limnsup F,(z) < F(x +¢).

Since x is a continuity point of F' sending € — 0 finishes the proof.

Theorem 7.3 Let F,, denote the cdf of X,,, and let F' denote the cdf of X. If

X, %5 X and F s continuous, then F, converges to F uniformly.
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Proof. Fix € > 0. Since F' is continuous we can find —oco < x7 < -+ < zp < 00

such that

F(x1) <€/2, 1-F(xr)<e€/2, and F(ax;p1)—F(x;)<e/2fori=1,...,k—1.

For z; <z <x;41i=1,...,k —1 and for sufficiently large n we have

Fo(z) = F(z) < Fa(wig) = F(zi) + F(zig1) = F(@is)

= Fo(ziy1) — F(®iz1) + F(xit1) — F(a;)

IN

€,

and

Fo(x) = F(z) = Fuli) = Fi) + F(a) — F(w)
= Fn(,TZ) — F($Z) + F($Z) — F($i+1)

> —e.

That is, there exists N; such that for all n > N;

sup |F,(x) — F(z)] <e.

z; <x<Tiy1

Similarly, if z < a4
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IN
o

and

Y
|
)

Thus, there exists Ny such that for all n > Ny

sup |F,(z) — F(x)] <e.

<z

The same can be done for z > x. Therefore, for n > max{ Ny, Ny, .

we have

sup |F,(z) — F(z)] <e.
x€R

O

N

Exercise 7.1 Give an example for each implication that shows that it is not

invertible.

Exercise 7.2 Show that

(a)if 0 < X, <Y, and Y,, — 0, then X,, — 0,

(b) if X, = 0 and P(|Y;,| > M) — 0 for some M > 0, then X,,Y,, — 0,

(¢) if X, = X and Y, = Y, then X, + Y, — X +Y,

(d) if X, = X and V,, == Y, then X,,Y,, — XV
Exercise 7.3 Show that if X, i) 0, then X, i) 0.
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7.2 Weak Convergence of Probability Measures

Definition 7.5 Let P, P,, be probability measures on (R, B(R)). The sequence
of probability measures {P,} converges weakly to probability measure P, written
P,=P, i

P,.(A) —» P(A)
for every set A = (—o0,z] with P({z}) = 0.

For any probability measure on (R, B(R)) we can introduce the correspond-
ing cdf (by F,(z) = P,((—00,2]) and F(x) = P((—o00,2])), so we will also use
notation F,, = F. Thus convergence in distribution and weak convergence
of probability measures are only different expression of the same fact. But the
new definition is a bit more flexible, and it can be easily extended to probability

measures on, say, metric spaces.
Exercise 7.4 Show that if F;, = F' and F,, = G, then F = G.

Exercise 7.5 Show that if lim,, F},(x) = F(z) for  in a set D dense in R, then

and F,, = F.

Lemma 7.1 (Quantile Function) Let F be a cdf. For 0 < w <1 define set

Aw) ={z:w < F(2)},

and

X (w) = inf A(w).
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Then

(a) A(w) is a closed on the left interval stretching to oo,

(b) X (w) is non-decreasing,

(¢c) w < F(x) if and only if X (w) < x or, equivalently, by taking negation of the

first statement we also have w > F(z) if and only if X (w) > z.

Proof.
(a) Assume that * € A(w) and z < 2/, then w < F(z) < F(a'), that is,
z’ € A(w). That is, A(w) is an interval stretching to co Now, let us show that

A(w) is a closed interval. If z,, — z, x, > z, and z,, € A(w), then

w < F(zy) | F(x),

therefore, w < F(z) and z € A(w). In particular, this means that X (w) € A(w)
and w < F(X(w)).

(b) Since for w < w’ we have A(w') C A(w) we get that X(w) is non-
decreasing.

(¢) f 2 < X(w) = inf A(w), then z ¢ A(w), and w > F(x). If inf A(w) =

X(w) <z, then z € A(w), and, therefore, w < F(z).

Exercise 7.6 Consider strictly increasing continuous functions f,, f : [0,1] —
[0, 1], with f,,(0) = f(0) = 0 and f,(1) = f(1) = 1. Assume that f,(z) — f(x)
for every z € [0,1]. Show that inverse functions converge to the inverse of f,

that is, f,, 1(y) — f~(y) forevery 0 <y < 1.
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Theorem 7.4 (Skorohod’s Theorem) Let P, P, be probability measures on
(R,B(R)) and P,, = P. Then there exist random variables X,, and X on a
common probability space (Q, F, Q) such that X,, has distribution P,,, X has

distribution P, and for every w € Q X, (w) - X (w).

Proof. Let us take Q@ = (0,1), F = B((0,1)), and Q = )\, the Lebesgue measure.
Consider the distribution functions F,, and F corresponding P, and P. For

every w € (0,1) we define

Xp(w) =inf{z:w < F,(z)}

and

X(w)=inf{z:w < F(x)}.

By Lemma [l w < F(z) if and only if X (w) < x. Therefore,

Qlw: X(@) < o] = Qs w < F(a)] = Al(0, F(2))] = F(a).

That is, F' is the cdf of X. In the same fashion, we can show that X, has
distribution Fj,.

Let us take w € (0,1). For any € > 0 we can find z with P({z}) = 0 such
that

X(w)—e<z < X(w).

Since z < X (w) & F(z) < w, and F,(z) — F(z) we get that for all sufficiently
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large n F,,(z) < w or < X,(w). So, we have that
X(w)—e<a< Xp(w).

Taking n — oo, because of an arbitrary choice of € we obtain
X(w) < limninf Xn(w).

Consider now w’ such that w < w’. For any ¢ > 0 we can find 2’ with
P({z'}) = 0 such that

X(Ww)<a <XW)+e.

Since X (w') < 2/ & W' < F(2), and F,(2') — F(2') we get that for all
sufficiently large n w < F,(2') or X, (w) < 2’/. Note that in this direction we
have the equivalency of non-strict inequalities; that is the reason why we need
the extra gap.

Thus we get that

Xp(w) <2’ < X(W') +e,

and, therefore,

lim sup X, (w) < X (w').

Therefore, for any 0 < w < w’ < 1 we get that

X (w) < liminf X, (w) < limsup X, (w) < X ().
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So, if w is a continuity point of X, then X,,(w) — X (w). Since X is nondecreas-
ing, it has at most countable numbers of points of discontinuity (that is, the
Lebesgue measure of this set is 0). Let us redefine X and X, at those points by
X(w) = Xp(w) = 0. This will not change the distributions of X and X,,, and

therefore, the construction is finished. 4

Exercise 7.7 Let F' be a cdf given by

0, x <0
z/3, 0<z<l1
Fl)=4q1/2 1<z<15

r—1 15<x<?2

Construct

Q(p) = inf{z : p < F(z)},

where 0 < p < 1.

Theorem 7.5 (Mapping Theorem) Suppose h : R — R is measurable, and
the set Dy, of its discontinuity is measurable as well. If P, = P and P(D}p) =

0, then P,h~! = Ph~!

Proof. Let us consider random variables X, and X constructed in Theorem [T.4]

1Ph~! is a probability measure on (R, B(R)) given by Ph~1(A4) = P(h~1 A).
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If X(w) ¢ Dy, then for such w we have h(X,(w)) = h(X(w)). Since

Q[X(w) S Dh] = P[Dh] = O,

we, in fact, have

W(Xn(w)) == h(X ()

with respect to measure Q. By Theorem [.2] we get that h(X,,) N h(X). But
Q[h(X) € Al = Q[X € h™1A] = P[h~1 A], that is, h(X) has distribution Ph~1.

Similarly, h(X,,) has distribution P,h~!

Corollary 7.1 (in terms of random variables) If X, 4 X and P[X € Dy) =

0, then h(Xn) -5 h(X).

Proposition 7.2 If X, % X and X, are uniformly integrable, then X is

integrable and EX,, - EX.

Proof. Exercise. Hint: use the Skorohod’s theorem and note that the uniform

integrability (see Definition [5.5]) can be thought as a statement in terms of cdfs.

O

Theorem 7.6 (Portmanteau Theorem) The following four conditions are

equivalent.
1. P, — P.
2. [g fdPy — [, fdP for all bounded, continuous real f on R.

3. fR fdP, — fR fdP for all bounded, uniformly continuous real f on R.
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4. Pp(A) = P(A) for every Borel set A with P(0A) = OH

Proof.

(1. = 2.) Let us again consider random variables X,, and X constructed in
Theorem [7.4l Let f be a bounded, continuous function. Then f(X,) — f(X)
Q-a.s. By change of variables theorem and the dominated convergence theorem

we have

| 14, = Bqlr(x,)] - Eql(x)) = [ fap.
R R

(2. = 3.) Obvious.

(1. = 4.) Let A be Borel set A with P(9A) = 0. Consider function
f(z) = 1a(z). It is a bounded function, and the set Dy of its discontinuities
is equal to A. Since P(0A) = 0 we get that f(X,) — f(X) Q-a.s., therefore,

again by change of variables and the dominated convergence theorem we get
P, (4) = Eq[f(Xn)] = Eq[f(X)] = P(A).

(4. = 1.) Obvious.
(3. = 1.) Consider the distribution functions F),, and F that correspond to

P, and P. For any = < y let us introduce the following bounded, uniformly

2Here the boundary dA = closure(A) N closure(A°).
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continuous function:

1 t<zx
O =9 w-t)/(y—=z) z<t<y
0 t>y

Since

F(z) = / P, < / fdp,
(—o0,z] R

and

/R fdP < /( AP=Fw),

it follows from 3. that

limsup F,(x) < F(y),

and sending y | « we get that (F is right-continuous)
limnsup F,(z) < F(x).

In similar fashion for u < x we can get that
Fu) < limninf F,(z)

and, as a consequence

F(z—) < liminf F, ().
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Thus, we have
F(z—) < liminf F,(x) < limsup F,(z) < F(z),

which means convergence at continuity points of F'.
Using these five implications we can go from any statement to another one,

so we are done!

Theorem 7.7 (Slutsky’s Theorem) Let X, 4y X and Y, 4, 0, then X, +

Y, -4 X,

Proof. Let f be a bounded, uniformly continuous function. By Portmanteau
theorem, it is enough to show that Ef(X,, +Y,) — Ef(X). For any 6 > 0 we

get that

[Ef(Xn+Yn) —Ef(X)] < [Ef(Xn+Ys) - Ef(X0)| + [Ef(X,) - Ef(X)]
< E[f(Xn+Ya) = F(Xn) Ly, <5
+E[f(Xn +Yn) = f(Xa) L)y, 55
+Ef(Xn) - Ef(X)]
< sup |f(z) - f(y)

|z—y|<é

+2sup|f(@)|P(Yn] > 0)

+Ef(Xn) - Ef(X)].

The first term is small for small § > 0 because of the uniform continuity of f,

the second one is small for large n because f is bounded and Y, LN 0, the last
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one is small because X, —- X and Ef(X,) = Ef(X).

O

7.3 Weak Convergence and Pointwise Conver-
gence of CF's

Theorem 7.8 (Helly’s selection Theorem) For every sequence of cdfs { Fn} n>1
there exists a subsequence of cdfs, {Fy, }n>1, and a nondecreasing, right-continuous

function F : R — [0,1] such that F,(x) — F(z) at continuity points of F.

Proof. Let Q = {q1,q2,¢3,...} be the ordered set of all rational numbers.
Since {Fn(g1)}n>1 C [0,1] there exists a sequence Fi,(q1) such that Fi,(q1)

converges to a number, let us call it Q(¢q1). Since {Fin(g2)}n>1 C

[0,1] there
exists a further subsequence Fy,(q2) such that Fb,(g2) converges to a number
that we denote Q(gz2); and so on.

Let us consider sequence of cdfs F,, = FMH By construction, for every

q € Q we have

Fo(q) = Q(q).

Note that @ is non-decreasing function on Q with values in [0, 1].

Now, for all z € R we define

F(z) =inf{Q(q) : z < g}

31t is so-called Cantor diagonal sequence.
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It is easy to see that F' is non-decreasing.

Next, we show that F' is right-continuous. Let xy | z and d = limy F(xy).
Since for any xj, we have F(z) < F(xy) it follows that F(z) < d. Assume that
F(z) < d. Then there exists < ¢ € Q such that Q(¢) < d. For large k we have

x < xg < ¢, and, therefore,

Fxr) < Qg) <d.

That is,

d= lilgnF(xk) < Q(q) < d,

a contradiction. Therefore, F'(z) = limy, F(zy).
Finally, let  be a continuity point of F. Take any y < x. Consider two

sequences 1, qr € Q such that

y<rg<xr<qr, TEdy, andqylx.
Since F}, is nondecreasing we have
Fn(rk) < Fn(x) < Fo(qr)-
Taking n — oo we get

Q(rr) < liminf F,(z) < limsup F,,(x) < Q(g)-
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Since

lim Q(ry) = inf Q(ry) = inf{Q(q) : y < q} = F(y),

and

lim Q(qx) = inf Q(ax) = nf{Q(q) : & < ¢} = F(x),

we finally obtain that for any y < «
F(y) < liminf F,(z) < limsup F,(z) < F(x).

Because of arbitrary choice of y we get that F,,(x) — F(z) at every point of

continuity x of F.

Exercise 7.8 Find an example of a sequence of cdfs {F,},>1 and a nonde-
creasing, right-continuous function F' such that
(a) F,(x) — F(z) at every continuity point  of F,

(b) 0 < F(+00) — F(—00) < 1.

Definition 7.6 A family of probability measures {Ps}ier on (R, B(R)) is said
to be relatively compact if every sequence of measures from the family contains
a subsequence that converges weakly to a probability measure. A family of cdfs
{F;}ter is relatively compact if the corresponding family of probability measures

is relatively compact.

We use word “relatively” because the limit need not belong to the original

family.
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Definition 7.7 A family of probability measures {Ps}ier on (R, B(R)) is said

to be tight if for each € > 0 there exists a compact subset I of R such that

iIngt(I) >1—e

A family of cdfs {Fi}ier is tight if the corresponding family of probability mea-

sures s tight.

Note that in the definition (because we consider R) the compact set I can be

substituted by a finite interval.

Exercise 7.9 Consider a sequence of random variables {X,},>1 such that

X, >0and EX,, = 1. Then P,, defined by

P,.(A) =EX,lx, ca,A < B[R)

are probability measures on (R, B(R)).
Show that the following two statements are equivalent.
(a) The sequence of random variables { X, },>1 is uniformly integrable.

(b) The sequence of probability measures {P,},>1 is tight.

Theorem 7.9 (Prokhorov’s theorem) A family of probability measures {P¢}ier

on (R, B(R)) is relatively compact if and only if it is tight.

Proof. Necessity. Assume that the family {P;}:cr is relatively compact but
not tight. Since the family is not tight, there exists € > 0 such that for every

interval I,, = [-n,n] we can find P,, with P, (I,,) < 1 — €. But because the
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family is relatively compact we can find a subsequence P,, and a probability
measure P such that P,, = P. Let [a,b] be a continuity set of P such that

P([a,b]) > 1 — €. Then by Portmanteau theorem we have

1—e < P([a,b]) = lilgnPnk([a,b]) = liinPnk([a,b]ﬁInk) <limsup P, (In,) < 1—¢,
k

a contradiction.

Sufficiency. Let {P,},>1 be a tight sequence of probability measures from
the family {P;};er. Let {F,},>1 be the corresponding sequence of cdfs. By
Helly’s selection theorem there exists subsequence Fj,, and a nondecreasing,
right-continuous function F' such that F,,, (z) — F(z) at continuity points of
F. Let us show that F' is, in fact, a proper cdf. Fix ¢ > 0. Since the family

{P}ier is tight we can find interval [a, b] such that

P, ([a,b]) >1—e

Let [a,b] C (a/,b'] and {a’,b'} is a continuity set of F. Then

1—e < Pnk([a7b]) < Pnk((alvbl]) = Fnk (b/) - Fnk (a‘/) - F(b/) - F(a/)a

that is, F(+00) — F(—o00) = 1, and, together with 0 < F(—o0) < F(+00) < 1,

it gives us that F,,, = F', and, of course, P,,, = P.

Corollary 7.2 Let {P,}n>1 be a tight sequence of probability measures on

(R,B(R)). Suppose that every weakly convergent subsequence converges to the
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same probability measure P. Then P, — P.

Proof. Suppose that P,, = P is not true. It means that there exists a point of
continuity of P, z, such that P,[(—o0c, z]] do not converge to P[(—oc0, z]], that
there exists € > 0 such that [P, [(—o0, z]] — P[(—00, z]]| > € for some sequence
{n}. By the Prokhorov’s theorem, there is a further subsequence that converges
weakly to some probability measure, and by the corollary assumption it must

converge to P, but no subsequence of P, can converge weakly to P.

Theorem 7.10 (Continuity Theorem) Let {P,P,},>1 be probability mea-
sures on (R, B(R)) with characteristic functions {¢, dn}n>1. A necessary and

sufficient condition for P, = P is that ¢, (t) — ¢(t) for every t.
Let us first prove the following lemma.

Lemma 7.2 Let ¢ be the characteristic function of a probability measure P.

Then for any A > 0 we have
Plcamz1-YA [ i gwa-1va
2 [t|<1/VA

Proof. For any € > 0 by Fubini’s theorem we get

1 p(t)dt = i/ /em”P(dx)dt
2¢ J_, 2¢ J_. Jr

1 €,

= —// " AtP (dx)
2e RJ—e
1

_ 1 [ 2sin(ex) -
S e

X

_ /R Sin(ex)P(dx)

€T
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IN

/ P(dz) + / L plan)
|z|<1/€? |z|>1/€2 €|z

< P[(-1/@1/) +e.

Thus, we have

P[(—=1/é%,1/eH)dt > l—l—% 6(gi)(t)—l)dt—e
> 1-% " l6(t) — 1)|dt — e

—€

Taking € = 1/v/A we get the result. 0

Theorem Proof.

Necessity. Since cos(tz) and sin(tz) are bounded continuous functions, the
necessity immediately follows from the Portmanteau theorem.

Sufficiency. By Lemma [[.2] we have

PA)] > 1-Y2 [, - ekt = 1V
VA
> 1—T/t|<1/\/2|1—¢(t)|dt
A 6() — ou(t)dt ~1/VA
[t|<1/vVA
> 1— sup |[1—¢(t)]
[t|]<1/VA
A 6() — ou(t)dt ~1/VA
[t|<1/vVA
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By continuity of ¢ at 0 and the dominated convergence theorem we find that
the {P,}n>1 is tight. If a subsequence P, converge weakly to a probability
measure Q with CF ¢(t), then by the necessity part ¢, (t) converges to ¢(t).
Therefore, ¢(t) = ¢(t), and, by the uniqueness theorem (Theorem [6H), we get

P = Q. Corollary [L.2] tells us that P,, = P.

Exercise 7.10 Show that
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Chapter 8

Limit Theorems

8.1 Weak Law of Large Numbers

Theorem 8.1 (J. Bernoulli’s Law of Large Numbers, 1713) Let {X,,}n>1
be i.i.d. Bernoulli random variables (that is, P(X,, = 1) =p and P(X,, =0) =

1—p, where 0 < p < 1). Then for any € >0

X; 4+ X,
P<‘ 1+ +
n

—p‘>e)—>0.

Theorem 8.2 (Chebyshev’s Law of Large Numbers, 1867) Let { X, },>1

be independent random variables such that Var(X,) < C. Then

Xi+---+X, EXi+---+EX,| p
— — 0.

n n
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Proof. By Chebyshev’s inequality we get for any € > 0

n2e?

POX1+~-~+Xn EX, +---+EX,
n n

>€) < Var(X; + -+ X,,)

nC

<
n2e?

— 0.

O

Theorem 8.3 (Khinchin’s Law of Large Numbers, 1929) Let {X,},>1 be

i.i.d. random variables such that E|X,| < co and EX,, = . Then

X+ -+ X,
n

—N‘Lo.

Proof. Consider Y,, = X,, — u. We need to show that

P

’Y1_|_...+Yn
—| — 0.

n

Note if ¢x (t) is a characteristic function of X,, then the characteristic function

of Y,

(by(t) = eii‘ut(bx(t).
By Theorem for any fixed ¢

Bt nl0) = [y ¢/ = [146-0- ~+o(1/m)| = 1.

By continuity theorem (Y + -+ + Y;,)/n 40 and, therefore, we get that
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(YVi+ -+ Ya)/n == 0.

8.2 Central Limit Theorem

Let us start from a simple result for the binomial distribution.

Theorem 8.4 (Poisson’s Theorem, 1837) Let {Xn}1<m<n be i.i.d. Bernoulli
random variables with probability of success p, = A/n such that 0 < A/n < 1.
Let Z be a random variable with Poisson distribution with mean . Then as

n — oo

Xin 4+ + Xon -5 Z.

Proof. Note that the characteristic function of X, is equal to (1—\/n)+e"\/n.

For any fixed ¢ we have

A, )
Ot X () = [1+ 2 (e = 1] = exp(A(e™ ~ 1)),

as n — co. The continuity theorem finishes the proof.

Central Limit Theorem (CLT) is a common name for limit theorems that
provide conditions under which sum of random variables (appropriately central-
ized and normalized) weakly converges to the standard normal distribution. We
will denote this convergence via LN (0,1). The first CLT for sum of Bernoulli
random variables with p = 1/2 was established by de Moivre in 1730. Laplace
generalized it to the case of arbitrary p in 1812. The next theorem sometimes

is called Levi’s theorem
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Theorem 8.5 (Central Limit Theorem) Let {X,},>1 be a sequence of i.i.d.

random variables with mean p and variance 0 < o < oo. Then

Xy 4o+ X,
ov/n

s A0, ).

Proof. Consider Y,, = (X,, — u)/o. Let ¢y (t) be a characteristic function of Y;,.

By Theorem for any fixed ¢

s ayiy vi(t) = [oy (t/v/n)]"

2t2 n
{1 + TE (Y1) + —Var(Yl) +o(1/n)

n
[1 - —+o(1/ n)]
e 2,
By continuity theorem we immediately get the result.
Now we prove a CLT for sums of independent (but not necessarily identi-
cally distributed) random variables. Let {X,,},>1 be a sequence of independent

random variables with means ,, and variances 0 < 02 < co. Denote

Sn:X1++Xn7

= Var(S ia s

k=1
and for e > 0

1 n
:B_Z (Xk = 111)* 1| X, |>eB, -
n k=1
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Theorem 8.6 (Lindeberg-Feller Theorem) Let {X,,},>1 be a sequence of
independent random variables with means i, and variances 0 < o2 < oco. If

Ly(e) = 0 for any ¢ > 0 then

1. (uniform asymptotic negligibility)

2. (normality)

Proof.

1. Note that for any 1 < k < n we have

o2 1
o= B )

n

1

1
= B E(Xk — 16)°1 1, — | <eB + Hr Bk — 16)*1 X~y | > B

< €2+ Ly(e).
Therefore, we have a uniform bound

2

O 2
max — <e“+ L, (€
1<k<n B2 — n(6),

and by choosing small €, and then sufficiently large n we can make the right-hand

side as small as we want.
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2. Without loss of generality let us assume that EXy; = up = 0. Let
Qbk (t) — Eeith,

and

Un(t) = B/ P = TT ¢u(t/Bn)-
k=1

We need to show that ), (t) — e /2 for any t € R as n — oo, or equivalently,
In ey, (t) +t2/2 — 0,

where In denotes the principal branch of the complex logarithm.

First, let us show that for k =1,....,n

In ¢ (t/Bn) = ¢r(t/Bn) — 1+ ri(t), (8.1)

where 7, (¢) are such that Y ;_, |rx(t)] — 0 as n — oco. Recall that (Lemmal[G.5)

k . :
; (iz)’ [+
o < . 2
c J;) B =+ (82)
Therefore,
, itX t2X2  t%0?
t/By) — 1] = |E |X#/Bn 1 _ LK B 2Tk
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Since

t20'£ 2 02 =0,
— max —-
2B2 — 2 1<k<n B2

as n — 0o, we get that |¢x(¢t/By) — 1] < 1/2 for sufficiently large n, and

In ¢k(t/Bn) = 1n(1 + ¢k(t/Bn) - 1)

t/B _1+Z J+1 Qbkt/li) )

= ¢i(t/Bn) — 1 +75(t).

Now, taking into account that |¢x(t/Bp) — 1| < 1/2 first we get that

k(O] <Y 1ok (t/Bn) — 11

=2

= 6u(t/Ba) — 112 !

1— [ (t/Bn) — 1|

< 2|¢k(t/Bn) - 1|2

Hence we then find that

D I <2 16k(t/By) — 1)
k=1

- Zth

:22 E|: lth/Bn 1 :|
k=1 Bn
" ot

<2 k

<2215
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t4 2 N 2

O O
< — _Rr
-2 1<k<n B2 32
4 02
= — max — — 0,
2 1<k<n B2

as n — o0.

n 2
Using (B1]) and that Z —’; =1 we get that

nnt) +2/2= 3 [ou(t/Ba) 14 52 + 3"t

k=1

Next, note that because of (82]) and the triangle inequality we obtain that

2o} [ itxe/B itXy 22 X7
(bk(t/B ) 1+ﬁ = E _6 -1 Bn — ZB% ]
<|g 'eitxk/Bn o itXy X}

1 c
B,  2BZ | Xklsem

it Xk i2t2X,§'1
Bn 2B’r27’ ] |Xk|>€Bn

+ E e’ith/Bn —1-

|t| | X[ X7
——3 Lix<eB, tE—5 2 1\Xk\>eBn
n

- 6B3
[t]3 o2  #2
STEB_]; + ﬁEXlgl\Xk\xBn-
Therefore, finally we obtain
n 2 n n
I, (1) + 22 < 1 B—’“ 57 2 BX L sen, + ) [re(t)
=1 n k=1 k=1
t* -
=5 >

which can be made as small as we want by choosing ¢, and then n.
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Note that the CLT for i.i.d. random variables follows from the Lindeberg-
Feller Theorem. The next so-called Lyapunov’s condition is easier to check and

it is sufficient for L,,(¢) — 0. More specifically, we have the following theorem.

Theorem 8.7 (Lyapunov Theorem) Assume that E|X|**° < oo for some

0>0andk=1,2,.... If

1
B2+5 Z E| X} — “k|2+5 -0
k=1
then
S, — ES,
T —d) N(O7 1).

Proof. Just note that

1 ° 1 - |Xk —,LLk|2+5
B_ ZE (Xk — ) 1|Xk —pk|>eBn = pH3 ZEmhxk—uklen
" k=1 k=

| /\

ZE|X7€ — /Lk|2+5 — 0.

§B2+5 Pt

O

Exercise 8.1 Let {X,,},>1 be a sequence of independent random variables

with variances 0 < 02 < co. Show that L, (¢) — 0 implies that B,, — occ.

Exercise 8.2 Let {X,,}»>1 be a sequence of independent random variables such
d

that 0 < inf,, Var(X,,) and sup,, E|X,,|> < co. Show that (S,, — ES,)/B, —

N(0,1).
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Exercise 8.3 Let {X,,},>1 be a sequence of i.i.d. random variables with means

p and variances 0 < 02 < co. Show that L, (¢) — 0.

8.3 Convergence of Series of Random Variables

Let { X, }n>1 be a sequence of i.i.d. random variables with P(X,, = 1) = P(X =
—1) = 1/2. Consider random variables S, = >_7_, Xx/k. What can we say

about the a.s. convergence of this sequence?

Theorem 8.8 (Cauchy Criterion for a.s. Convergence) The following three

conditions are equivalent.
1. X, is convergent with probability 1,

2. for every e >0

P

sup | Xx — Xj| > €| =0, as n — oo,
kJ>n

3. for every e >0

P {sup | Xnir — Xn| > e] — 0, asn — 0.
k>0

Proof.

(1. = 2.) Let X,, % X. Since

sup | X — X;| < sup | Xy — X |+ sup | X; — X/,
k,>n k>n I>n
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by Theorem [Tl we get the result.

(2. = 1.) Let B = {w: X,,(w) does not converge}. Note that

B ={w : liminf X, (w) < limsup X,,(w)}

={w:3IN >1Vn >13k,1 > n st | X;(w) — Xp(w)| > 1/N}.

So, we have

oo oo

B=J ([sup X - Xi| >1/N].
N=1n=1 ki=n

Note that A, = [supy,;>,, |Xx — Xi| > 1/N] is a monotone decreasing sequence

of events. Therefore,

P(B)< ) P( N [kSlU>P | Xk — Xa] > 1/N])-
N=1 n=1 ="

But for any fixed N we have

P(Dl[kf}lfn Xy — X| > 1/N])

= lim P([sup X5 — Xi| > 1/N])

n—00 k,I>n

:0,

That is, we have that P(B) = 0.
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(2. < 3.) Just observe that
sup |Xn+k - Xn| < sup |Xn+k - Xn+l| < 2sup |Xn+k - Xn|
k>0 k>0 k>0

This completes the proof.
Exercise 8.4 Show that if 0 < X,, <Y, and Y,, 2, 0, then X, ..

Theorem 8.9 (Kolmogorov’s Inequality) Let {X,},>1 be a sequence of in-

dependent random variables with means pi, and variances o2 < co. Then

P | max
1<k<n

Proof. Without loss of generality we assume that p, = 0. Denote S, = X; +

-+ + X,. Consider the following events:

A={w: max |Sk(w)| > €},

Ar ={w: [S1(w)| = €},

Ay ={w: [S1(w)] < € [Sa(w)| = €},

Ap ={w:|S1(w)] <€ ... |Sn—1(w)] <€ |Sn(w)] > €}.
It is obvious that A = U}_; Ax, and Ay A; = 0 if k # [. First, note that

Var(S,) = ES; > ES 14 =Y ES}1a,.
k=1
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Now, we find that

ES214, =E[Sk + Xgq1 + -+ X)) 14,
=E[Si)?1a, + B[Xpi1 + -+ Xu]?1a, + 2ESp(Xpi1 + -+ X,)1a,
=E[Sp]*1a, + E[Xpi1 + -+ X214, +2ESp 14, E(Xpp1 + - + X0)
=E[Si]*14, + E[Xpp1 + - + Xa]*14,
> E[Si]*14,

> 62P(Ak).
Thus we finally get that

Var(S,,) > zn:e2P(Ak) = P(A).
k=1

O

Exercise 8.5 (symmetrization trick) Let X and X’ be i.i.d. with mean g,
variance o and CF ¢(t). Show that X — X’ is symmetrically distributed random

variable with E(X — X') =0, Var(X — X') = 202, and ¢x_x/(t) = |6(t)|?.

Theorem 8.10 (Two-Series Theorem) Let {X,,},>1 be a sequence of inde-

pendent random variables with means i, and variances o2 < co.

1. If both series >, pn and Y., o2 converge, then > X, converges with

probability 1.
2. If >, Xy converges with probability 1 and there is C' such that P(|X,| <
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C) =1 for all n, then both Y, i, and Y., o2 converge.

Proof.

1. Without loss of generality we assume that u, = 0. Denote S, = X7 +

-+ X,,. By Cauchy criterion (Theorem [RB.8)) we need to show that for every

e>0

P [sup [Sntk — Sn| > e} — 0, as n — oo.
k>0

By Kolmogorov’s inequality we have

P {sup|5n+k - Su| > 6:| = lim P [ sup |Spik — Sn| > €
k>0 N—oo  |1<k<N

n+N

< lim E ol /e
N—o00
k=n+1

oo

= Z o/t =0,

k=n-+1

as n — o0.

2. Since S,, &% S, at any t € R the CFs of S,, converge to the CF of random

variable S. But
therefore,

and

[Tlox, 0P = lés@)* >0
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for all ¢ sufficiently close to 0, because |¢ps(t)|? is a CF. By a standard result

from analysis we get

00 > Z(l —lox; (%)
= Z/ (1 — cos(tz))Fj(dx)
ZL sin?(tz/2) F; (dz),

where F} is a cdf that corresponds to CF |¢x, (t)|?. Since |sin(y)| > |y|/2 for

small y, we can pick up t close to 0 such that

0 >2) / sin?(tx/2) F;(dzx)

That is, >, 02 converges. By the first part of the theorem Y (X, — )
converges with probability 1. Taking into account that ) X, converges with

probability 1 as well, we also get that ) u, converges.
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Exercise 8.6 Let {X,},>1 be a sequence of ii.d. random variables with
P(X, =1) = P(X = —1) = 1/2. Show that ), X} /k converges with probabil-

ity 1.

Theorem 8.11 (Three-Series Theorem) Let {X,},>1 be a sequence of in-

dependent random variables. For any C > 0 denote ch = X;lix;<c-

1. If there is C > 0 such that >, EXS, > Var(XS) and Y, P(|X,| > C)

converge, then Y X, converges with probability 1.

2. If 3, X, converges with probability 1, then >, EXS, > Var(X$) and

Y. P(| Xy > C) converge for every C > 0.

Proof.

1. By the two-series theorem Y, X converges with probability 1. Because
Y. P(|Xn| > C) < o0, by the Borel-Cantelli lemma we have that P(|X,,| >
Ci.0.) = 0, that is, X,, = X for all n with at most finitely many exceptions.
Hence ), X, converges with probability 1 as well.

2. The a.s. convergence of ) X, implies that X,, — 0 with probability
1. Therefore, P(|X,,| > C i.0.) = 0 for any C' > 0, and by the Borel-Cantelli
lemma (X, are independent!) we obtain that > P(|X,,| > C) < co. Moreover,
the a.s. convergence of > X, together with P(|X,,| > C i.0.) = 0 implies that
Yon XY converges with probability 1. Therefore, by the two-series theorem we

get that >, EXY and ), Var(X() converge.

Exercise 8.7 Let {X,},>1 be a sequence of independent non-negative random
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variables. Show that ) X, converges with probability 1 if and only if

> [P(X, > 1)+ E(X,lx,<1)] < oo

n

Exercise 8.8 Let {X,,},>1 be a sequence of independent non-negative random

variables. Show that ) X, converges with probability 1 if and only if

Xn
E .
Exercise 8.9 Let {X,},>1 be a sequence of independent random variables

random variables with EX,, = 0. Show that if

X2
E—"% — < oo,
2 BTx]

then ) X, converges with probability 1.

8.4 Strong Law of Large Numbers
We will begin with two auxiliary results.

Lemma 8.1 (Toeplitz Lemma) Let {a,}n>1 be a sequence of positive num-
bers, by, = Y p_; ag, and suppose that b, T co. If {xn}tn>1 is such that x, — x

then

1 n
— E apTp — I.
bn,

k=1

162



Proof. Fix € > 0. First, choose ng such that |z, — x| < ¢/2 for all n > ng. Then

choose ny1 > ng such that

1 &
b—Zak|xk — x| <€/2.

™M k=1

Now, for all n > n; we have

n
Ly
— AT — T
b,
k=1

1 n
Sb—Zak|xk—x|
k=1
1 no 1 n
§b— ak|xk—x|—|—b— Z ay |z — x|
n nk:’ﬂo-‘rl

n

1
ak|xk—x|—|—b— Z ak |z — x|
=1 " k=no+1

IN
@‘H
Mz L

IN

O

Exercise 8.10 Suppose that {z,},>1 is such that z, — x. Show that

x1+...+xn
n

— T.

Lemma 8.2 (Kronecker’s Lemma) Let {b,}n>1 be a sequence of positive in-

creasing numbers, and b, 1 co. If {xn}n>1 is such that Y, x, converges then
1 n
E I; bk:Z?k — 0.
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Proof. Denote by =0, Sg =0, S, = 22:1 T, and S = lim,, o Sp,. Then

n

bi(Sk — Sk-1) = bnSn — Y (b — br—1)Sk-1,

k=1

b=

&M=

that is,

1 n
brxy, = n_E; (b, — br—1)Sk—1-

M=

1
bu

=
I
—

Since S,, — S, then by Toeplitz lemma

1 n
b_z (bk — br—1)Sk—1 = S
" k=1

as well. Therefore,
1 n
E Z bk:Z?k — 0.
k=1
O

Exercise 8.11 Suppose that ) x,/n converges show that

S S — 0.

Theorem 8.12 (Strong LLN) Let {X,,},>1 be a sequence of independent ran-
dom variables with finite second moments. Suppose that {b,}n>1 is a sequence
of positive increasing numbers such that b,, T oo, and

Z Vé;)%Xn < 00.

n
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Then with probability 1

Sy, —ES,

0.
b

Proof. By the two-series theorem with probability 1

X, —-FEX,
)

n n
converges. Therefore, by Kronecker’s lemma with probability 1

S,—ES, 1< EXk
T‘bnz =0

asn—>oo.D

Exercise 8.12 Let {X,},>1 be a sequence of i.i.d. random variables with

P(X, =1)=P(X = —1) = 1/2. Show that with probability 1

X1+ + X,
Vnlnn

Lemma 8.3 Let X be nonnegative random variable with EX < co. Show that

i P(X >n) <EX<1+ZPX>n)

n=1

Proof. Exercise. Use EX = [[* P(X > z)dxz (see Example[5.2).

Theorem 8.13 (Strong LLN for I.I.D. Random Variables) Let {X,,}n>1

be a sequence of i.i.d. random variables with E|X1| < co. Then with probability
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1 we have

Sn
—_— EXl
n

Proof. Without loss of generality assume that EX; = 0. Because of Lemma [R-3]

and Borel-Cantelli we get that
P(|X,| >nio.) =0.

Let YV, = X,1|x,|<n- Since Y,, = X, for all n with at most finitely many

exceptions,
X1+ + X,
— =0, as.
n
if and only if
Yi+---+Y,
— = 0 as.
n

Next, note that by the dominated convergence theorem EY,, = EX11|x,|<n — 0

as n — 0o, therefore, by Toeplitz lemma

EY; +---+EY,

— 0.
n
So, if we denote Z,, =Y,, — EY,, we get that
Yi+--+Y,
—— >0 as.
n
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if and only if

i+ + 2y
— =0 as.

The two-series theorem together with Kronecker’s Lemma tell us that all we

need to prove is that
Var(Z
yoYarlZo)
n

We have for

= Var(Z,) <= EY?
& EX2lix,<n
_;7”2

EXl 1|X1|<n

o Z n2
= Z Z Pleo1<ix, 1<k
—1 k=1

=1
= ZEXflkflﬁ\XlKk Z n2
n=k

k=1

8 \

3|,_.

3

8

Do

2
< EXT1i_1<1x, )<k

E
Il

1

< 22 E|X1|1i—1<ix <k
k=1

= 2E|X1| < 0

This finishes the proof.
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Exercise 8.13 Show that for every £ > 1 we have

E N

(e 1 _
> <
n=k

Exercise 8.14 Show that EX? < oo if and only if

ZnP(|X| >n) < 0.
n=1

Finally, let us note that a converse (in a sense) is also true.

Proposition 8.1 Let {X, },>1 be a sequence of i.i.d. random variables such

that with probability 1 we have
— — C < oo.
n

Then E|X;| < 00, and C = EX;.

Proof. Observe that with probability 1

Xn Sn n—lSn,1
_)
n n n n-—1

Therefore, P(|X,,| > n i.0.) = 0, and by Borel-Cantelli lemma

ZP(|X1| >n) < oo.

n

Lemma [B3] gives us E|X;| < oo, and by the strong LLN for i.i.d. sequences we
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get that C = EX;.

Example 8.1 (The Monte Carlo Method) Let f : [0,1] — [0, 1] be contin-
uous function. Let X;,Y7, Xo,Ys,... be a sequence of i.i.d. random variables

uniformly distributed on [0,1]. Let Z,, = 1¢(x,)>y, . Since

1
EZ, = / f(z)dz < oo,
0
by the strong LLN we get that with probability 1

DR 1
M%/ F(@)da.
0

n

169



Chapter 9

Martingales

9.1 Conditional Expectation: Definition

Definition 9.1 Given are a probability space (Q, F,P), a o-field G C F, and
a random variable X with E|X| < co. We define conditional expectation of X
given G, E(X|G), to be any random variable Y that satisfies the following two
conditions:

a) Y is G-measurable,

b) forall Ac G EX14=EY1y.

Theorem 9.1 (Existence and Uniqueness of Conditional Expectation)

The conditional expectation exists, a.s. unique, and integrable.

Proof. First, let us prove that the conditional expectation is integrable. Let
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A={w:Y >0}, then

EY14 =EX14 <E|[X|14,

and

E(_Y)lAc == E(_X)lAc S E|X|1Ac

Thus E|Y| < E|X]|.
The existence follows from the Radon-Nikodym Theorem. Indeed, first as-

sume that X > 0. Then

v(A) =EX1,, Aeg

is a measure on (€2, G), and it is absolutely continuous with respect to P. There-

fore, there exists an integrable G-measurable random variable Y > 0 such that

V(A) = EYlA,

for all A € G. The general case is treated with help of Hahn’s decomposition
X=Xt-X".
Assume that Y’ is another conditional expectation of X given G. Consider

A.={w:Y =Y’ > ¢}, where ¢ > 0. Then

0=E(X - X)ls =EY —Y')14 > eP(A),
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that is, P(A¢) = 0 for any € > 0. Therefore, Y < Y’ a.s. But by the same

argument we get that Y’ <Y a.s. g

Definition 9.2 Conditional probability of event A given o-field G is defined by
P(A|G) = E(14]G).
Exercise 9.1 Suppose that two integrable random variables X; and X5 coin-

cide on B € G. Show that E(X;|G) = E(X2|G) a.s. on B.

Exercise 9.2 Let A and B be two events, and G = o(1p). Find P(A|G).

9.2 Properties of Conditional Expectation

Here all random variables on (€2, 7, P) have finite absolute first moment, all
o-fields are subfileds of F, and all equations/inequalities that involve random

variables hold a.s.

» E(E(X|9)) = E(X)

Proof. Since Q € G

E(E(X|9)) = E(E(X|9)1q) = E(X1o) = E(X).

O
e If X is G-measurable, then E(X|G) = X.

Proof. 1t is immediate from the definition.
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o (linearity) E(aX + bY'|G) = aE(X|G) + bE(Y|G).

Proof. For any A € G we have

E[(cE(X|G) + bE(Y|G))14] = aE[E(X[G)14] + bE[E(Y|G)1.4]
= aB(X1,) + bE(Y14)

= E[(aX +bY)14).

O
e (positivity) If X > 0 then E(X|G) > 0.

Proof. For any A € G we have that G-measurable random variable E(X|G)

satisfies
E(E(X|G)14) = E(X14) > 0,
therefore, (see page[67) we get E(X|G) > 0.
e (monotonicity) If X >Y then E(X|G) > E(Y|G).
Proof. 1t immediately follows from positivity and linearity.

e (conditional monotone convergence theorem) If 0 < X,, + X with EX <

00, then E(X,,|G) 1 E(X]G) a.s.

Proof. By positivity and monotonicity 0 < E(X,|G) 1. Let Y = limsup,, E(X,,|G),
then Y is G-measurable, and for any A € G E(X,,|G)14 1 Y14 a.s. Since

for any A € G we have

E(Xn14) = E(E(X,|G)14),
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therefore, by the monotone convergence theorem
E(X14)=E(Y14),

that is, Y = E(X|G). o

e (conditional Fatou’s Lemma)

(1) If X,, > Y for all n, and E(Y) > —o0, then
E(limninf X,|G6) < limninf E(X,|G).
(2) If X,, <Y for all n, and E(Y) < oo, then
limnsup E(X,|9) < E(limnsup X.|G).
(3) If | X,| <Y for all n, and E(Y) < oo, then

E(liminf X, |G) < liminf E(X,|G) < limsup E(X,|G) < E(limsup X,,|G).

Proof. Exercise.

e (conditional dominated convergence theorem) Let Y, X1, Xo, ... be random
variables such that | X,,| <Y for all n, E(Y) < oo, and X,, — X a.s. Then
as n — oo with probability 1

E(X,|G) — E(X|g).

174



Proof. Exercise.

o (tower property) If H C G C F, then

E(E(X[9)[H) = E(X|H) = E(E(X[H)[G).

Proof. The second equation is trivial. Now, let Y = E(X|G) and Z =
E(X|H). Just note that for every A € H C G using definitions of Y and

Z we get

E(Y14) =E(X14) = E(Z14).

O

e (non-anticipating multiplier property) Suppose that both E|Y X| and E|X|

are both finite, and Y is G-measurable, then

E(Y X|G) = YE(X|G).

Proof. Consider first Y = 15 where B € G. Then for any A € G we have

E(15E(X[G)14) = E(E(X|9)145)
=E(X14p)

= ElpXly,
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that is, 13E(X|G) = E(15X|G). By the linearity we get that it is true if
Y is a non-negative simple random variable. The monotone convergence
theorem gives us the formula for Y, X > 0. Splitting X and Y into positive

and negative parts finishes the proof.

(conditional Jensen’s inequality) Let f be a convex Borel function, and let

X be random variables with E|X |, E|f(X)| < co. Then

fEX]9) < E(f(X)]9).

In particular, for p > 1

[E(X]G)[" < E(X[?|9).

Proof. First recall that a Borel function f : R — R is said to be convex iff

for any y there is a number a(y) such that

f(@) > fy) + (z — y)a(y)

for all z € R.

By convexity we have (assuming z = X, y = E(X|G))

f(X) = F(BE(X]|9)) + (X - E(X]|9))a(E(X]9)),

and after taking the conditional expectation with respect to G we obtain
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Jensen’s inequality.

Exercise: Provide the details. Note that we do not know if the expectation

of the RHS, in fact, exists. 5

o (independence) If X is independent of G, then E(X|G) = E(X).

Proof. Note that E(X) is G-measurable and for every A € G we have

E(E(X)L4) = E(X)E(Ly) = E(X14).

O

e (geometrical interpretation) Suppose EX? EY? < co and Y is G-measurable,
then

E(X —-E(X|G))? <E(X —-Y)2%

Proof. Denote Z = E(X|G). We have

EX-Y)?=EX-Z+Z-Y)?
=EX-2?+EZ-Y)*+2E[(X -2)(Z-Y)]

>E(X - 2)2+2E[(X - 2)(Z -Y)]

But since Z — Y is G-measurable we also get

E[(X - 2)(Z-Y)] = E[E(X - 2)(Z - Y)|9)]
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=E[(Z-Y)E(X — Z|G)]

—E[(Z-Y)-0]=0.

Note that the Cauchy-Schwarz inequality was used in the proof. 5

Exercise 9.3 Suppose X and Y are independent. Let f : R? — R be a Borel

function such that E|f(X,Y)| < oo, and g(-) = E(f(-,Y)). Then

E(f(X,Y)]o(X)) = g(X).

Exercise 9.4 Let Var(X|G) = E(X?|G) — E(X|G)?. Show that

Var(X) = E(Var(X|G)) + Var(E(X|G)).

Exercise 9.5 Let {X,,},>1 be a sequence of i.i.d. random variables with means
p and variances 02 < oo, and N an independent positive integer-valued random

variable with mean n and variance v2. Show that

Var(X; + -+ Xn) = o?n + p?v>.

Exercise 9.6 Let Xq,..., X, beii.d. random variables, S,, = X1 + --- + X,,,

and G = 0(S,). Find E(X;G).
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9.3 Martingale: Definition

Definition 9.3 Consider probability space (Q, F,P). A sequence of o-fields

{Fn}n>1 is called filtration if

FiCFoCFz3C---CF.

We also define Foo C F as o (UpFp).

Definition 9.4 We say that a sequence of random variables { X, }n>1 is adapted

to a filtration {Fp}n>1 if Xy is Fnp-measurable for every n.

Definition 9.5 A sequence of random variables { X, }n>1 is called o martingale

with respect to filtration {Fp}n>1 if
1. { Xy }n>1 is adapted,
2. E|X,| < oo for all n,
3. E(Xp41|Fn) = X, forn > 1.

If in the last condition we substitute = by > then sequence is called a submartin-

gale. If = is replaced by < then we say sequence forms a supermartingale.
Exercise 9.7 Prove the following statements.
1. If {X, }n>1 forms a submartingale, then {—X,,},,>1 is a supermartingale.

2. {X,}n>1 is a martingale iff it is both a submartingale and supermartin-

gale.
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3. If {X,, }n>1 forms a martingale, then for any 1 < m < n we have E(X,,|F,,) =

X
Example 9.1 Here are some examples of martingales.

e Let {X,,}n>1 be a sequence of i.i.d. random variables with EX,, = 0 and
EX? =1, F, = o(X4,...,Xn), and S, = X1 + -+ + X,,. Then both S,

and S2? — n are martingales.

e Let {X,}n>1 be a sequence of i.i.d. non-negative random variables with

EX, =1, and F, = 0(X1,...,X,). Then []}_, X is a martingale.

e Let {X,,}n>1 be a sequence of i.i.d. random variables with P(X = 1) = p,
PX=-1)=g=1-—p,where0<p<1,and S, = X1 +---+ X,,. Then

Sn
(%) is a martingale.
e Consider a random variable X with finite absolute first moment, and some

filtration {F,}n>1. Define X,, = E(X|F,), n > 1, then X,, forms a

martingale with respect to {F,}n>1.

Exercise 9.8 Assume that {X,,},>1 and {Y, },>1 are submartingales with re-

spect to a filtration {F, }n>1. Show that {max(X,,Y,)},>1 is a submartingale.

Exercise 9.9 Assume that {X,,},>1 is a martingale with respect to a filtration
{Fn}n>1, and f is a convex Borel function such that E|f(X,,)| < co. Show that

{f(Xy)}n>1 is a submartingale.

Exercise 9.10 Assume that {X,},>1 is a submartingale with respect to a
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filtration {F,}n>1, and f is a convex, nondecreasing Borel function such that

E|f(Xy)| < oo. Show that {f(X,)}n>1 is a submartingale.

Exercise 9.11 Let X = {x1,22,...,2,} be a fixed set of real numbers, and
let X1, X35, ..., X,, be the successive values of a sample of size n that is drawn
sequentially without replacement from the set X'. Consider the sequence of
sigma-fields o (X7, ..., X§), 1 <k <n and the partial sums Sy = X7 +--- + X},

< k < n. Show that (nSx — Spk)/(n — k), 1 <k <n—11is a martingale.

9.4 Optional Stopping Theorem

Definition 9.6 We say that a sequence of random variables {Cp}n>1 is pre-
dictable with respect to a filtration {Fn}n>o0 if Cpn is Fn_1-measurable for every

n>1.

Definition 9.7 Let { X, }n>0 be a martingale with respect to a filtration {Fp }n>0.
Let {Cy,}n>1 be a predictable sequence. The martingale transform of {X,}n>0

by {Cn}n>1, {(Co X)n}tn>1, is define by

Theorem 9.2 (Gambling Theorem) Let {X,,},>0 be a martingale with re-
spect to a filtration {Fp}tn>0, and let {Cp}n>1 be a predictable sequence such
that E|Cy (X, — Xp—1)| < 0o. Then {(C o X)n}n>1 forms a martingale.

If { X, }n>0 is a supermartingale (submartingale), and {C),}n>1 is also non-
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negative, then {(C o X),}n>1 is a supermartingale (submartingale).

Proof. It is obvious that (C o X),, is F,-measurable and integrable for every

n > 1. Since

E(Cn(Xn - Xn—l)lj:n—l) = CnE(Xn - Xn—l|]:n—1) =0

we get that {(C o X),,}»>1 is a martingale (that starts at 0).

In a similar way we can prove the second statement.
O
Definition 9.8 A non-negative integer-valued random T is called a stopping

time if for every n > 1 event {r < n} € F,.

Example 9.2 Let {X,},>1 be a sequence of i.i.d. random variables with
PX =1 =p,P(X =-1)=¢qg=1-p, where 0 < p < 1, and S, =

X1+ -+ Xy, So = 0. Take integers A, B > 1. Define

T =1inf{k: Sy = A or S, = —B}.

The random variable 7 is a stopping time.

Example 9.3 If 74 and 7o are stoping times, then 7 A 72 = min(7my,72) is a
stopping time.

Theorem 9.3 (Stopped Martingale Theorem) If{X,},>0 is a martingale
(super- or sub-) and T is a stopping time, then {Xuar}n>0 s a martingale

(super- or sub-).
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Proof. Define C), = 1,<-. The random variable C;, takes only two values, 0
or 1, and {C, =0} = {n > 7} = {7 < n-1} € F,_1. Therefore, C), is

Fn_1-measurable. But since

Xn/\T = XO + (C o X)n7

we get the results by the gambling theorem.

Theorem 9.4 (Doob’s Optional Stopping Theorem) Let {X,},>0 be a mar-

tingale (super- or sub-) and T be a stopping time. Then

E(Xy) =E(X,), (= or X)

in each of the following situations:
1. 7T is bounded by integer N with probability 1;
2. sup,, | Xnnr| is bounded with probability 1;
3. ET < oo and sup,, | X;, — X,,—1] is bounded by K with probability 1.

Proof. Let us prove the theorem for martingales, and leave the rest as an

exercise. By the stopped martingale theorem {X, A }n>1 is a martingale,

EX,nr = EX, (9.1)

and X,rr — X, with probability 1 as n — oo. Then for the first situation we

take n = N in ([@J]). The second and third cases are proved by the dominated
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convergence theorem. The second situation is trivial. For the third case note
that
nAT
[ Xnnr — Xol = | > (X — Xp1)| < K7,
k=1

and EKT < oo. 0

Exercise 9.12 Let {X,},>1 be a sequence of i.i.d. random variables with
PX =1 =p,P(X =-1)=¢g=1-—p, where 0 < p < 1, and S,, =

X144+ X, So =0. Take integers A, B > 1. Define

T =inf{k: Sy = A or S, = —B}.

Find P(S, = A).

Exercise 9.13 (Wald’s Identities) Let {X,, }n>1 be a sequence of i.i.d. random
variables with EX? < oo, and 7 is a stopping time with respect to F,, =
o(X1,...,X,). Assume that 7 is bounded by integer N with probability 1.
Show that

E(X;+---+ X,) =EX, -Er,

and

E[(X;+ -+ X,) - 7EX;]* = Var(X,) - Er.

Exercise 9.14 Let {X,},>1 be a sequence of i.i.d. random variables with
PX=1)=1/2,P(X=-1)=1/2,and S,, = X1+ ---+ X,,, So = 0. Let

7 =inf{k : Sy = 1}. Prove that ET = oo.
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9.5 Doob’s Convergence Theorem

Definition 9.9 Let {X,},>0 be a martingale with respect to a filtration {Fp }n>o0.
The number of upcrossings of [a,b] made by {X,,}n>0 by time N, Unla,b], is

defined to be the largest k such that one can find
0<s51<t1 <89 <t < <85, <tpr <N
such that
X, <a, X¢y>b 1<i<k.

Let us introduce the following predictable process {C), },>1. Define

Cl = 1X0<a7

and for n > 2

Cn=1c,_ =1lx, ,<v+1c,_1=0lx,_,<a-

Let Y,, will be martingale transform of X,,, that is, ¥,, = (C o X),,. Let us
explain the meaning of Y,,. Suppose that X,, — X,,_; represent our winnings
per unit stake in round n. Our gambling strategy is as follows. First we wait
till {X,,} is below a, then we play unit stakes until {X,,} gets above b. Once it
is above we stop and wait till it is below a, and then start playing again, and

so on. The process {Y,} represent our total winnings. Figure provides an
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illustration. It is easy to see that

Yn > (b—a)Un[a,b] — (Xy —a)". (9.2)

Lemma 9.1 (Doob’s Upcrossing Lemma) For any N > 0 we have
(b—a)EUN]a,b] < E(XNy —a)”.

Proof. Just observe that {Y,,} is a martingale with EYy = 0.

Theorem 9.5 (Doob’s Convergence Theorem) Let {X,},>0 be a martin-

gale with respect to a filtration {Fp}n>0 such that
supE|X,,| < oc.
n

Then lim,, X,, exists and is finite with probability 1.

Proof. Let a < b. Define Uy [a, b] = lim,, Uy [a, b]. By Lemma [0.1] we have
(b — a)EUn]a,b] < |a| + E|X§| < |a|] + sup E| X,,|.
By monotone convergence theorem we get that

EUxla,b] < oo,
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and, therefore,

P(Usla,b] = o0) = 0.

Now, note that

A ={w: X, (w) does not converge to a limit in [—oo, +00]}
={w: lirr%liann(w) < limsup X, (w)}
= U {w: limninf X,(w) <a<b<limsup X, (w)}.
a<b, a,beQ "
Since

{w : liminf X, (w) < a < b < limsup X, (w)} C {w : Uxla, b](w) = oo},

by the countability we get that P(A) = 0. Hence the limit of X, exists a.s. in

[—00,4+00]. Let Xoo(w) = lim,, X, (w). Finally, by Fatou’s lemma we obtain
E|X»| = Eliminf | X,| < liminf E|X,,| < supE|X,| < oo,

so that

P(X is finite) = 1.

Note here that we do not have convergence in L.

Exercise 9.15 Prove Doob’s convergence theorem for supermartingales.
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Exercise 9.16 Let {X,,},>0 be a non-negative martingale, then lim,, X, exists

and finite with probability 1.

9.6 Lo-Bounded Martingales

Let {X, }n>0 be a martingale with respect to a filtration {F, }n>0, and suppose

that EX?2 < oo for every n.

Lemma 9.2 (Pythagoras’s Formula)

EX? =EX}+ ) B(X;— Xp1)%
k=1

Proof. Let s <t <wu <w. Then

E(X, — X,)(X; — X,) = E[E (X, — X.)(X; — X,)|F)]
= E[(X; — X,)E (X, — Xu)|Fu)]
=E[(X; — Xs)(Xy — X,)]

=0.
That is, the formula
X, = Xo+ Z(Xk — Xi1)
k=1
expresses Xy, as the sum of orthogonal terms.

Theorem 9.6 (L:-Bounded Martingale Convergence) Let {X,,},>0 be a

martingale with respect to a filtration {F,}n>0 with EX2 < oo for every n.
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Then

supEX? < oo (9.3)

if and only if

ZE(Xk — kal)z < oQ.
k

Moreover, if (3.3) holds then X,, converges a.s. and in L.

Proof. The first statement follows from Pythagoras’s formula. If ([@3]) holds
then

supE|X,| < oo,
n
and by Doob’s convergence theorem we get that lim,, X, exists a.s. Let X =

lim,, X,,. By Pythagoras’s formula we have that

n+k
E(Xp—Xa)?= Y E(X;— X, 1)
1=n+1

Therefore, by Fatou’s Lemma we obtain

E(Xoo — X,)? < > E(X; — X, 1)%,
i=n+1

and, as a consequence,

ImE(Xo — X,,)? = 0.

O

Theorem 9.7 (Doob’s Decomposition) Any submartingale {X,,}n>0 can be
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written in a unique way as

Xn = Mn + Anv
where My, is a martingale and A, is an is a predictable increasing sequence with
Ag = 0.
Proof. Let

An - An—l = E(Xn|]:n—l) - Xn—l

and

M, =X, —A,.

It is clear that A,, is F,,_i-measurable, and it is increasing because X, is sub-

martingale. Now, note that

E(M,|Fn-1) = E(X,|Fn-1) — An
=Xp_1+ An - An—l - An
=Xn1- An—l

= n—1,

that is M, is a martingale.
To prove uniqueness, assume that there is another decomposition X, =

M) + Al,. Then

E(X,|Fo1) =M,  + A, =X,_1—A,_, +A.

n
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This means that
A;l - A:l_l = E(Xn|]:n71) - anl = An - Anflv

and Mr/L = Mn. O
If {X,}n>0 is a La-bounded martingale with Xo = 0, then by Jensen’s

inequality {X2},>0 is a submartingale. In this case
Ay = A1 = E[(X7 = X5 )| Fa1) = E[(Xn — Xpo1)?| Fra]-
Since EX?2 = EA,, we also get that
sup EX2 < o0

if and only if

E(sup 4,,) < 0.

Exercise 9.17 Let {X,},>1 be a sequence of independent random variables
with EX,, = 0 and EX2 < o0, F,, = 0(X1,...,X,), and S, = X1 + -+ + X,,.

What is A, for the submartingale S2?

9.7 UI Martingales

Theorem 9.8 (UI Martingale Convergence) Let {X,,},>1 be a martingale

with respect to a filtration {Fn}n>1, and assume that {X,}n>1 is uniformly
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integrable. Then X, converges a.s. and in L. Moreover, if we denote X, =
lim,, X,,, then

X, = E(Xo|Fn).

Proof. The uniform integrability implies that
supE|X,,| < oc.

Therefore, by Doob’s convergence theorem we get that lim, X, exists with
probability 1. Because of uniform integrability we also have X,, Ly X
Now let us show that

X = E(Xoo|Fn)-

Note that for any A € F,, and k > n we have
EX)14 = E[E(Xs14|F,)] = E[E(X|F)1a] = EXola.
But since Xz1a4 =5 X, 14 as well we get that

EX 14 =EX,14.

O

Lemma 9.3 Given are a probability space (0, F,P), a filtration {Fy,}n>0, and
a random variable X with E|X| < co. Let X,, = E(X|F,). Then {Xp}n>0 is a

UI martingale.
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Proof. We only need to check that {X,},>0 is UL Note that by Jensen’s in-
equality we have |X,,| < E(|X||F,) a.s. and E|X,| < E|X]|, hence for any

a,b > 0 we have

ElXn|l|x,1>a < E[l1x, >« E(|X]|F0)]
=E[E(X|[1x, 54l Fn)]
=E|X|lx, >
=E[X[Lx,>alix)<p + BIX[11x, 50l x|>0
<OP(|Xn| > a) + E[X[1x|5p

b
< 5E|Xn| + E[ X1 x>

IN

b
“E[X| +E|X[1xp5.

Choosing large b first, and then large a, we can make the RHS (that bounds the

LHS uniformly w.r.t. n) as small as we want.

Theorem 9.9 (Levy’s Convergence Theorem) Given are a probability space
(Q,F,P), a filtration {F,}n>0, and a random variable X with E|X| < co. Let

X, =E(X|F,). Then X,, - E(X|Fx) a.s and L;.

Proof. By the Ul martingale convergence theorem we have that X,, converge
a.s. and in L;. Let Z = lim, X,, and Y = E(X|F). All we need to show is

that two F-measurable Z and Y are a.s. equal. Without loss of generality, we
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assume that X > 0. Consider two measures on (€2, Foo):

uz(A) =EZls, and py(A) =EY1y4.

By the tower property and the Ul martingale convergence theorem

Thus for any A € F,, we have

EYls =EX, 14 =EZ14.

This means that two measure uz and py coincide on field U, F,,, hence, by the

set induction they must coincide on Foo = 0(UpFy). Thus Z =Y as. g

9.8 Martingale Inequalities

Here is a submartingale version of Kolmogorov’s inequality.

Theorem 9.10 (Doob’s Submartingale Inequality) Let{X,},>1 be a non-

negative submartingale, and X = maxi<p<n Xi. Then

P (X;>c) <E(Xnlx:>c) <E(X,).
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Proof. Consider the following events:

A ={w: X} (w) > c},
A ={w: X1(w) > ¢},

Ay ={w: Xi(w) < ¢, Xa(w) > ¢},

Ap={w: Xj(w) <e¢,..., Xp1(w) < ¢, X (w) > c}.

It is obvious that A = U}_; Ay, and Ay A; = 0 if k # I. Now, A € Fy, and

Xy > c on Aj. Therefore,
EX, 14, = E[E(anAku:k)] = E[lAkE(Xnu:k)] > E[lAka] > cP(Ag).

Summing over k finishes the proof.

Lemma 9.4 For any non-negative X and p > 0 we have
EX? :p/ tPTIP(X > t)dt.
0

Proof. Exercise.

Theorem 9.11 (Doob’s L, Maximal Inequality) Let {X,},>1 be a non-

negative submartingale, X

= maxi<g<n Xk, and p > 1. Denote || - ||, =

[E| - [P]Y?. Then

* p
X < —|Xnllp-
[1Xalle = 2= 1 Xally
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Proof. Assume first that || X}||, < oco. By Doob’s inequality and Fubini’s

theorem we get

E(X})? = p/ tPTIP (X > t)dt
0

gp/ tPPEX, x> dt
0

< p/ P2 an)(:thPdt

0 Q
p | Xn / P 1 x> dtdP
Q 0 B

X
=p / X, / tP=2dtdP
Q 0
P _gix

= ——E[X,(X;)"].
LB, ()]
Hence, by Holder’s inequality we obtain (here ¢ = p/(p — 1))

E(X;)" < qB[XA(X3)" 1] < gl Xallp 1P lq = gl Xall,BX5)7)9.

Dividing both sides of the inequality by [E(X})?]'/? gives us the result.
Finally, note that if || X, ||, = oo, then the inequality is obvious. However,

if E[|X,[|, < oo, then || X ]|, < oo as well (prove it!).

THE END
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P-almost surely, 66 in L, 124

in distribution, 124
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in probability, 123

birthday paradox, 29
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with probability 1, 123
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convex function, 78
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Cauchy criterion, 155 correlation coefficient, 92

central limit theorem, 149 covariance, 90

characteristic function, 94 matrix, 91
of normal distribution, 95, 98 cumulative distribution function, 24
of normal random vector, 118 of random variable, 45

of random vector, 113
discrete probability space, 28

Chevalier de Mere problem, 30
distribution

conditional
absolutely continuous, 25

expectation, 170
compound Poisson, 99

probability, 172
discrete, 25

convergence
lattice, 101

almost surely (a.s.), 123
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singular, 25 Doob’s submartingale, 195
Doob’s decomposition, 190 Holder’s, 79

Jensen’s, 78
expectation

Kolmogorov’s, 157
of nonnegative random variable, 61

Lyapunov’s, 79
of random variable, 63

Minkovski’s, 80
of simple random variable, 59

inversion formula, 102
field, 10 for Z-valued RVs, 106

o-field, 10 for Integrable CFs, 106, 114

generated by random variable, for random vectors. 113

42

law of large numbers
Lebesgue, 35

Bernoulli’s, 146
tail, 56

Chebyshev’s, 146
filtration, 179

Khinchin’s, 147

independent strong, 164
o-fields, 47 strong, i.i.d., 165
events, 47 Lebesgue measure
random variable, 115 on ([0,1],B([0,1])), 35
random variables, 47 on ([0,1], B([0,1])), 34
inequality lemma

Cauchy-Shwarz’s, 78 Doob’s Upcrossing, 186

Chebyshev’s, 77 Fatou’s, 70

Doob’s L, maximal, 196 first Borel-Cantelli, 50
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Kronecker, 163 probability space, 19
second Borel-Cantelli, 51 product space, 85

Toeplitz, 162
quantile function, 129

martingale, 179
random element, 45

martingale transform, 181
random variables, 36

measure
extended, 39

absolutely continuous, 81
independent, 47

metric, 44
simple, 37

space, 44
approximation by, 39

moment, 108
relatively compact, 140

absolute, 108

monotonic class, 11 stoping time, 182

submartingale, 179

normal distribution
supermartingale, 179

multivariate, 117, 120
system

PDF, 120
A-system, 13

standard, 95
N -system, 14

number of upcrossings, 185
m-system, 13

open set, 44
theorem
predictable sequence, 181 o-additive/continuous measures, 21
probability distribution o-field/monotonic class, 12
of random element, 45 UI martingale convergence, 192
of random variable, 45 Bochner’s, 100
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Caratheodory’s, 31
change of variables, 82
continuity, 143

dominated convergence, 71
Doob’s convergence, 186
Dynkin’s, 14

Fubini’s, 85

gambling, 181
Heine-Borel, 33

Helly’s selection, 138
independence criterion, 48
Kolmogorov’s 0-1, 57
Lebesgue-Stieltjes Integral, 31
Levy’s convergence, 194
Lindeberg-Feller, 150
Lyapunov, 154

mapping, 133
measurability test, 37
monotone convergence, 68
optional stopping, 183
Polya’s, 100

Poisson’s, 148

Portmanteau, 134

Prokhorov’s, 141

Radon-Nikodym, 82

set induction, 26

Skorohod’s, 130

Slutsky’s, 137

stopped martingale, 182

three-series, 161

two-series, 158

uniqueness, 105
tightness, 141

triangle inequality, 44

uniform integrability, 74

variance, 90
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