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Chapter 1

Basic Set Theory

1.1 Terminology and Notation

• Sample space Ω: an arbitrary set representing a list of possible outcomes

ω ∈ Ω of a random experiment.

• Events A,B,C, ...: any subsets (A ⊂ Ω) of the sample space Ω.

• Impossible event ∅: the empty set.

We say that A is a subset of B (A ⊂ B), iff ω ∈ A implies ω ∈ B, and we

say that A = B, iff A ⊂ B and B ⊂ A.

Set operations.

1. Complementation:

Ac = {ω : ω /∈ A}.
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2. Intersection over arbitrary index set T :

⋂

t∈T

At = {ω : w ∈ At for all t ∈ T },

also, in case of a small number of events, we will use:

A ∩B or AB.

3. Union over arbitrary index set T :

⋃

t∈T

At = {ω : w ∈ At for some t ∈ T },

also, in case of a small number of events, we will use:

A ∪B.

4. Set difference:

A \B = ABc.

5. Symmetric difference:

A△B = (A \B) ∪ (B \A).

Events A and B are mutually disjoint or mutually exclusive if A∩B = ∅. In

case of mutually disjoint events A+B can be used for A ∪B.
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Properties of set operations:

1. Complementation:

(Ac)c = A, ∅c = Ω, Ωc = ∅.

2. Commutativity:

A ∪B = B ∪ A, A ∩B = B ∩ A.

3. Associativity:

(A ∪B) ∪ C = A ∪ (B ∪ C) , (A ∩B) ∩ C = A ∩ (B ∩ C) .

4. De Morgan’s laws:

(

⋃

t∈T

At

)c

=
⋂

t∈T

Ac
t ,

(

⋂

t∈T

At

)c

=
⋃

t∈T

Ac
t .

5. Distributivity:

B ∩
(

⋃

t∈T

At

)

=
⋃

t∈T

BAt, B ∪
(

⋂

t∈T

At

)

=
⋂

t∈T

(B ∪ At) .
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We define the indicator function of A as

1A(ω) =















1, if ω ∈ A

0, if ω ∈ Ac

Note that

1A ≤ 1B iff A ⊂ B

and

1Ac = 1− 1A.

1.2 Limits of Sets

We define

inf
k≥n

Ak =

∞
⋂

k=n

Ak,

sup
k≥n

Ak =

∞
⋃

k=n

Ak,

lim inf
n→∞

An =

∞
⋃

n=1

∞
⋂

k=n

Ak = {ω : ω ∈ An for all n ≥ n0(ω)} ,

lim sup
n→∞

An =
∞
⋂

n=1

∞
⋃

k=n

Ak = {ω : ω ∈ An infinitely often} .

If for some sequence of evens {Bn}

lim sup
n→∞

Bn = lim inf
n→∞

Bn = B,
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then B is called limit of Bn, and we write

lim
n→∞

Bn = B or Bn → B.

Properties:

1. lim infn→∞ An ⊂ lim supn→∞ An

2. (lim infn→∞An)
c
= lim supn→∞Ac

n

We say that a sequence of events {An} is monotone non-decreasing (An ↑)

if A1 ⊂ A2 ⊂ ..., and it is monotone non-increasing (An ↓) if A1 ⊃ A2 ⊃ ....

Proposition 1.1 For a monotone sequence of sets, the limit always exists:

(1) if An ↑, then limn→∞ An =
⋃∞

n=1An,

(2) if An ↓, then limn→∞ An =
⋂∞

n=1An.

Consequently,

lim inf
n→∞

Bn = lim
n→∞

(

inf
k≥n

Bk

)

, lim sup
n→∞

Bn = lim
n→∞

(

sup
k≥n

Bk

)

.

Proof. Let us prove (1). We only need to show that lim supnAn ⊂ lim infnAn.

First note that monotonicity gives us

lim inf
n

An =

∞
⋃

n=1

∞
⋂

k=n

Ak =

∞
⋃

n=1

An.
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But also we have

lim sup
n

An =
∞
⋂

n=1

∞
⋃

k=n

Ak ⊂
∞
⋃

n=1

An = lim inf
n

An

which finishes proof.

1.3 Fields

Definition 1.1 A non-empty class of subsets, A, of Ω is called field if

(1) Ω ∈ A,

(2) A ∈ A implies Ac ∈ A,

(3) A,B ∈ A implies A ∪B ∈ A.

One can show that field is a collection of subsets which is closed under finite

union, finite intersection (note AB = (Ac ∪Bc)c) and complements.

Definition 1.2 A non-empty class of subsets, B, of Ω is called σ-field if

(1) Ω ∈ B,

(2) B ∈ B implies Bc ∈ B,

(3) Bi ∈ A, i ≥ 1 implies
⋃

i≥1Bi ∈ B.

A σ-field is a collection of subsets which is closed under countable union,

countable intersection and complements.

Examples.

1. The power set. The set of all subsets of Ω, 2Ω is a σ-field.
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2. The trivial σ-field. {∅,Ω} is a σ-field.

3. The countable/co-countable σ-field C. Let Ω = R, A ∈ C iff either A is

countable or its complement is.

Exercise 1.1 Let Ω = N. A ∈ C iff either A is finite or its complement is. Is C

a field? σ-field?

Exercise 1.2 Let Ω = N. For any A, a subset of N, we define An = A
⋂

[1, n].

Let an is the cardinality of An. Consider a collection of subsets of N, A, for

which limn→∞ an/n exists. Is A a field? σ-field?

Let B1 and B2 be σ-fields, the intersection of B1 and B2 is {B ⊂ Ω : B ∈

B1 and B2}.

Proposition 1.2 An intersection (finite or over an index set) of σ-fields is a

σ-field.

Proposition 1.3 Let C be a collection of subsets of Ω. Then there is a smallest

σ-field σ(C) containing all the sets that are in C.

Proof. First note that there is at least one σ-field that contains C. Let us define

σ(C) as a collection of all sets that belong to every σ-field containing C. It is

easy to check that σ(C) is a σ-field, and it is the smallest.

1.4 Monotonic Class

Definition 1.3 A collection M of subsets of Ω is a monotonic class if An ∈

M, n = 1, 2... and An ↑ A or An ↓ A implies that A ∈ M.
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Let C be a collection of subsets of Ω, then by µ(C) we denote the smallest

monotonic class containing all the sets that are in C (which exists, prove it).

Proposition 1.4 Let A be a field of subsets of Ω. The following two conditions

are equivalent:

(1) A is a σ-field,

(2) A is a monotonic class.

Proof. (1) ⇒ (2) Any σ-field is obviously a monotonic class (recall An ↑ A =

∪nAn).

(2) ⇒ (1) Let An ∈ A. Consider Bn =
⋃n

i=1 Ai. Since A is a field, Bn ∈ A.

But also Bn ⊂ Bn+1, and Bn ↑ ⋃∞
i=1 Ai, therefore, by definition of a monotonic

class
⋃∞

i=1Ai ∈ A

The following theorem shows that by taking monotonic limits we can turn

a field into a σ-field.

Theorem 1.1 Let A be a field of subsets of Ω. Then

µ(A) = σ(A)

Proof. By Proposition 1.4 σ(A) is a monotonic class, therefore, µ(A) ⊂ σ(A).

Thus, it would be enough to establish that µ(A) is a field (and, therefore, a

σ-field, by Proposition 1.4 again).

First, we show that A ∈ µ(A) implies Ac ∈ µ(A). Consider

M = {B : B ∈ µ(A), Bc ∈ µ(A)}.
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Note that A ⊂ M ⊂ µ(A). It is easy to prove that M is a monotonic class.1

Since µ(A) is the smallest monotonic class, M = µ(A), and, as consequence,

we have A ∈ µ(A) ⇒ A ∈ M ⇒ Ac ∈ µ(A)

Next, we prove that µ(A) is closed under taking finite unions. Consider

M1 = {A : A ∪B ∈ µ(A) for all B ∈ A.}

Then M1 is a monotonic class and A ⊂ M1, therefore, µ(A) ⊂ M1. Let

M2 = {B : A ∪B ∈ µ(A) for all A ∈ µ(A)}.

Then M2 is also a monotonic class. Now, if B ∈ A and A ∈ µ(A) ⊂ M1, then,

by definition of M1 we get A ∪ B ∈ µ(A), that is, B ∈ M2. Thus, A ⊂ M2,

and by minimality of µ(A) we get µ(A) ⊂ M2. Finally, if B ∈ µ(A) ⊂ M2 and

A ∈ µ(A), by definition of M2 we obtain A ∪B ∈ µ(A).

Exercise 1.3 Prove that M, M1, and M2 are monotonic classes.

1.5 Dynkin’s theorem

Definition 1.4 A collection P of subset of Ω is a π-system if it is closed under

finite intersection.

Definition 1.5 A non-empty class of subsets, L, of Ω is called λ-system if

1For example, we need to show that if Bn ∈ M and Bn ↑ B then B ∈ M. By definition
of M, Bn ∈ M implies that Bn ∈ µ(A) and Bc

n ∈ µ(A). Since µ(A) is a monotonic class, we
obtain that B = lim ↑ Bn ∈ µ(A) and Bc = lim ↓ Bc

n ∈ µ(A), i.e. B, indeed, belongs to M.
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(1) Ω ∈ L,

(2) A,B ∈ L, A ⊂ B implies B \A ∈ L,

(3) Bi ∈ L, i ≥ 1, Bi ⊂ Bi+1 implies
⋃

i≥1 Bi ∈ L.

Definition 1.6 A non-empty class of subsets, L, of Ω is called λ′-system if

(1) Ω ∈ L,

(2) B ∈ L implies Bc ∈ L,

(3) if Bi ∈ L, i ≥ 1 and they are disjoint, then
∑

i≥1Bi ∈ L.

Exercise 1.4 Prove that postulates of λ-system and λ′-system are equivalent.

Let C be a collection of subsets of Ω, then by λ(C) we denote the smallest

λ-system containing all the sets that are in C.

Theorem 1.2 (Dynkin’s Theorem) Let P be a π-system of subsets of Ω.

Then

λ(P) = σ(P)

Proof. Every σ-field is a λ-system, therefore, λ(P) ⊂ σ(P). Now, if we prove

that λ(P) is closed under finite intersection, then λ(P) is a σ-field, and, as a

result, σ(P) ⊂ λ(P).

Let us define

L1 = {B ∈ λ(P) : B ∩A ∈ λ(P) for all A ∈ P}.

It is easy to see that P ⊂ L1, L1 is a λ-system. Therefore, by minimality of

λ(P) we have λ(P) ⊂ L1. By definition of L1 we also have L1 ⊂ λ(P). That is,
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L1 = λ(P).

Now let

L2 = {A ∈ λ(P) : B ∩ A ∈ λ(P) for all B ∈ λ(P)}.

Again L2 is a λ-system.

Now, if B ∈ P and A ∈ λ(P) = L1, then, by definition of L1 we get

A ∩ B ∈ λ(P), that is, B ∈ L2. Thus, P ⊂ L2, and by minimality of λ(P)

and definition of L2 we get λ(P) = L2. That is, whenever A ∈ λ(P) = L2 and

B ∈ λ(P), by definition of L2 we obtain A ∩B ∈ λ(P).

Exercise 1.5 Show that L1 and L2 are λ-systems.

Exercise 1.6 Prove that if a λ-system is closed under intersection, then it is a

σ-field.

Exercise 1.7 Let P be a π-system, and L be a λ-system. Prove that if P ⊂ L,

then σ(P) ⊂ L

Exercise 1.8 Give an example of λ-system which is not a σ-field.

1.6 Borel σ-fields

Consider the real line R and let I be the collection of intervals of form:

(a, b] = {x ∈ R : a < x ≤ b}
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for all a and b, −∞ ≤ a ≤ b ≤ ∞, with a convention that (a,∞] = (a,∞). Let

A be the system of finite sums of disjoint intervals of the form (a, b], i.e.,

A ∈ A iffA =

n
∑

i=1

(ai, bi].

Exercise 1.9 Prove that A is a field, but not a σ-field.

Definition 1.7 The Borel σ-field on the real line, B(R), is the smallest σ-field

that contains A, and its sets are called Borel sets.

Exercise 1.10 Observe that I is a π-system. Show that σ(I) = B(R).

Note that

(a, b) =

∞
⋃

n=1

(a, b− 1/n],

[a, b] =
∞
⋂

n=1

(a− 1/n, b],

{a} =

∞
⋂

n=1

(a− 1/n, a].

Thus the Borel σ-field contains singletons {a} and all sets of these six forms

(a, b), [a, b], [a, b), (−∞, b), (−∞, b], (a,∞).

One can show that that construction of the Borel σ-filed can be based on any

of these six types of intervals.

Exercise 1.11 Let I1 is the collection of intervals of form [a, b]. Show that

σ(I1) = B(R).
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Proposition 1.5 Let C be a collection of subsets of Ω, let B ⊂ Ω, and define

collection of subsets of B:

C ∩B = {A ∩B : A ∈ C}.

Then

σ(C ∩B) = σ(C) ∩B,

as σ-fields on B.

Proof. Obviously C ∩ B ⊂ σ(C) ∩ B. Also it is clear that σ(C) ∩ B is a σ-field

(on B), therefore, by minimality of σ(C ∩B) we get that

σ(C ∩B) ⊂ σ(C) ∩B.

Now let us define

CB = {A ∈ σ(C) : A ∩B ∈ σ(C ∩B)}.

Note that CB is a σ-field (on Ω), and

C ⊂ CB ⊂ σ(C).

Therefore,

σ(C) ⊂ σ(CB) = CB ⊂ σ(C),
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and σ(C) = CB. Thus, if A ∈ σ(C) = CB, then by definition of CB we get

A ∩B ∈ σ(C ∩B) which means that σ(C) ∩B ⊂ σ(C ∩B).

Exercise 1.12 If collections C1 and C2 are such that C1 ⊂ C2, then σ(C1) ⊂

σ(C2).

Definition 1.8 Let I is a collection of all closed intervals of [a, b]. The Borel

σ-field on [a, b], B([a, b]), is is the smallest σ-field that contains I, and, by

Proposition 1.5

B([a, b]) = B(R) ∩ [a, b].
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Chapter 2

Probability Space

2.1 Definition and Basic Properties

Definition 2.1 A probability space is a triple (Ω,F ,P), where

(a) Ω is a set of points ω;

(b) F is a σ-field of subsets of Ω;

(c) P is a σ-additive probability measure, i.e.

1. P : F 7→ [0, 1],

2. P(Ω) = 1,

3. If {An}n≥1 are disjoint events from F , then

P(
⋃

n≥1

An) =
∑

n≥1

P(An).
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Properties of probability measures.

1. P(Ac) = 1−P(A).

Proof. 1 = P(Ω) = P(A ∪ Ac) = P(A) +P(Ac).

2. P(∅) = 0.

Proof. P(∅) = P(Ωc) = 1−P(Ω) = 1− 1.

3. P(A ∪B) = P(A) +P(B)−P(AB).

Proof. Note first that

P(A) = P(ABc) +P(AB),

P(B) = P(BAc) +P(AB).

Thus

P(A ∪B) = P(ABc ∪BAc ∪ AB)

= P(ABc) +P(BAc) +P(AB)

= P(A) −P(AB) +P(B)−P(AB) +P(AB)

= P(A) +P(B)−P(AB).

4. Inclusion-Exclusion Formula:

P(
n
⋃

i=1

Ai) =
∑

i

P(Ai)−
∑

i<j

P(Ai ∩ Aj) +
∑

i<j<k

P(Ai ∩ Aj ∩Ak)
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+ · · ·+ (−1)n+1P(A1 ∩ · · · ∩ An).

Proof. By induction. The induction base, case of n = 2, has already been

proved. Transition from n− 1 to n is based on the following observation:

P(

n
⋃

i=1

Ai) = P(

n−1
⋃

i=1

Ai ∪ An) = P(

n−1
⋃

i=1

Ai) +P(An)−P(

n−1
⋃

i=1

AiAn).

After applying the inclusion-exclusion formula (twice) for n− 1 we obtain

the needed result.

5. Monotonicity Property:

P(A1 ∪ A2 · · · ) ≤ P(A1) +P(A2) + · · · .

Proof. Let B1 = A1, Bn = Ac
1 · · ·Ac

n−1An, n ≥ 2. It is easy to see that

Bi ∩Bj = ∅ and
⋃

n≥1An =
∑

n≥1Bn. Therefore,

P(A1 ∪ A2 · · · ) = P(B1 +B2 + · · · )

= P(B1) +P(B2) + · · ·

≤ P(A1) +P(A2) + · · · .

Theorem 2.1 Let P be a finitely additive measure of sets from σ-field F1 with

P(Ω) = 1. The following four conditions are equivalent:

1i.e., for every disjoint sets A and B in F we have P(A+ B) = P(A) +P(B).
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(1) P is σ-additive (i.e., P is a probability measure),

(2) P is continuous from below, i.e., if An ↑ A, An ∈ F , then P(An) ↑ P(A),

(3) P is continuous from above, i.e., if An ↓ A, An ∈ F , then P(An) ↓ P(A),

(4) P is continuous at ∅, i.e., if An ↓ ∅, An ∈ F , then P(An) ↓ 0.

Proof. (1) ⇒ (2)

Let An ↑ A, An ∈ F .

P(
⋃

n≥1

An) = P(A1 +A2 \A1 +A3 \A2 + · · · )

= P(A1) +P(A2 \A1) +P(A3 \A2) + · · ·

= P(A1) +P(A2)−P(A1) +P(A3)−P(A2) + · · ·

= lim
n

P(An)

(2) ⇒ (3)

Let An ↓ A, An ∈ F . Consider sequence {Ac
n}n≥1. It is nondecreasing, there-

fore, by (2)

lim
n

P(Ac
n) = P(

⋃

n≥1

Ac
n).

Now,

lim
n

P(An) = lim
n
(1−P(Ac

n)) = 1− lim
n

P(Ac
n)

= 1−P(
⋃

n≥1

Ac
n) = 1−P([

⋂

n≥1

An]
c)

= 1− 1 +P(
⋂

n≥1

An) = P(
⋂

n≥1

An)
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(3) ⇒ (4)

Obvious.

(4) ⇒ (1)

Let {Ai}i≥1 be disjoint events from F .

∞
∑

i=1

P(Ai) = lim
n

n
∑

i=1

P(Ai) = lim
n

P(

n
∑

i=1

Ai)

= lim
n
[P(

∞
∑

i=1

Ai)−P(

∞
∑

i=n+1

Ai)]

= P(

∞
∑

i=1

Ai)− lim
n

P(

∞
∑

i=n+1

Ai) = P(

∞
∑

i=1

Ai),

because
∑∞

i=n+1Ai ↓ ∅ (why?), and by (4) limn P
(
∑∞

i=n+1Ai

)

= 0.

Exercise 2.1 Consider a probability space (Ω,F ,P). Suppose that A = limAn

exists, where An ∈ F . Show that

lim
n

P(An) = P(A).

Exercise 2.2 Let (Ω,F ,P) be a probability space. Consider set function on

F × F :

ρ(A,B) = P(A△B).

Show that ρ(·, ·) satisfy the triangle inequality, i.e., for any A,B,C ∈ F

ρ(A,C) ≤ ρ(A,B) + ρ(B,C).

Exercise 2.3 Let µ be a finitely additive finite measure on a field A, let Ai, i ≥
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1 be disjoint sets from A such that A =
∑

i≥1Ai also belongs A. Which one,

(a) µ(A) ≥
∑

i≥1

µ(Ai) or (b) µ(A) ≤
∑

i≥1

µ(Ai),

is true? Prove that one, and give a counterexample for another.

2.2 Cumulative Distribution Function

Consider the probability space {R,B(R),P}. Let

F (x) = P((∞, x]).

Proposition 2.1 The function F (x) has the following properties:

(1) F is right continuous2 and has a limit on the left,

(2) F is monotone non-decreasing,

(3) F (−∞) = limx↓−∞ F (x) = 0, F (∞) = limx↑∞ F (x) = 1.

Proof. The continuity property of P implies (1) and (3) (check it!). Monotonic-

ity of P gives (2).

Definition 2.2 A function F : R 7→ [0, 1] that satisfies (1)-(3) is called a cu-

mulative distribution function.

Three types of distribution functions:

• Discrete distribution function. If F is piecewise constant, and it changes

its values at points x1, x2, ... by jumps of size p1, p2, ... (pk > 0,
∑

k pk =

2If xn ↓ x, then F (xn) ↓ F (x)
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1), then F is called discrete. Examples: Discrete Uniform, Bernoulli,

Binomial, Poisson, Geometric etc.

• Absolutely continuous distribution function. If F has the representation

F (x) =

∫ x

−∞
f(y)dy,

for some nonnegative function, then F is called absolutely continuous, and

function f is called the density of the distribution function F . Examples:

Uniform on [a, b], Normal, Exponential, χ2, Cauchy etc.

• Singular distribution function. If all the points of increases of the continu-

ous distribution function F 3 belongs to a set with zero Lebesgue measure

(see later), then F is called singular. It is a very strange type of distribu-

tion one example of which can be found in Shiryaev (1995, p. 156).

One can show that any distribution function F can be represented as a mixture

F (x) = αdFd(x) + αcFc(x) + αsFs(x),

where αd, αc, αs ≥ 0, αd + αc + αs = 1, and cdfs Fd, Fc, and Fs are discrete,

absolutely continuous and singular, respectively.

2.3 Set Induction: Dynkin’s Theorem Again

Set induction is the most important application of Dynkin’s Theorem.

3x is a point of increase of F if for any ǫ > 0 we have F (x+ ǫ)− F (x− ǫ) > 0
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Proposition 2.2 Let P1, P2 be two probability measures on {Ω,F}. The col-

lection

L = {A ∈ F : P1(A) = P2(A)}

is a λ system.

Proof. Let us use here λ′-system postulates.

First, note that Ω ∈ L, because P1(Ω) = P2(Ω) = 1.

Second, A ∈ L, i.e., P1(A) = P2(A) implies Ac ∈ L, i.e., P1(A
c) = P2(A

c),

because

P1(A
c) = 1−P1(A) = 1−P2(A) = P2(A

c).

Finally, if {Ai} is a sequence of mutually disjoint events from L, then

P1(
⋃

i

Ai) =
∑

i

P1(Ai) =
∑

i

P2(Ai) = P2(
⋃

i

Ai).

That is,
⋃

iAi ∈ L.

Theorem 2.2 (Set Induction) Let P1, P2 be two probability measures on

{Ω,F}. Let P be a π-system such that

A ∈ P ⇒ P1(A) = P2(A),

then

B ∈ σ(P) ⇒ P1(B) = P2(B).
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Proof. Define

L = {A ∈ F : P1(A) = P2(A)}.

By Proposition 2.2 L is a λ-system. But P ⊂ L, therefore, by Dynkin’s Theorem

σ(P) ⊂ L.

Exercise 2.4 Give an example that shows that if P is not a π-system then Set

Induction Theorem does not hold.

Proposition 2.3 Let Ω = R. Let P1, P2 be two probability measures on

{R,B(R)} such that their distribution function are equal, i.e., for any x ∈ R

F1(x) = F2(x). Then P1 ≡ P2 on B(R).

Proof. Let

P = {(−∞, x] : x ∈ R}.

Obviously, P is a π-system. As we know σ(P) = B(R). Now, F1(x) = F2(x)

implies that P1 and P2 agree on P , therefore they agree on σ(P) = B(R).

2.4 Construction of Probability Spaces:

Discrete Models

Let Ω = {ω1, ω2, ...} is countable. For each ωi we assign the number pi, where

i ≥ 1, pi ≥ 0 and
∑

i≥1

pi = 1.

Let F be the set of all subsets of Ω, 2Ω.
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For A ∈ F , we define

P =
∑

ωi∈A

pi.

The set function P is a probability measure.

Exercise 2.5 Show that P is a probability measure.

The introduced probability space {Ω,F ,P} is called a discrete probability

space.

Example 2.1 Flipping a loaded coin N times.

Ω = {0, 1}N = {ω = (ω1, ..., ωN ) : ωi = 0 or 1}.

Probability P is determined by

pω = p
∑

i
ωiqN−

∑
i
ωi ,

where p ≥ 0, q ≥ 0, p+ q = 1. Check that P is a probability measure.

Example 2.2 Coincidences. Suppose the integers 1, 2, ....n are randomly per-

muted.

Ω = {ω = (x1, ..., xn) : xi ∈ {1, ..., n}; i = 1, ..., n;xi 6= xj}.

Probability P is defined by

P(ω) = 1/n!
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What is the probability that there is an integer left unchanged by the permu-

tation? Let Ai is event when i left by the permutation on the ith position. By

the inclusion-exclusion formula we obtain

P(

n
⋃

i=1

Ai) =
∑

i

P(Ai)−
∑

i<j

P(Ai ∩ Aj) +
∑

i<j<k

P(Ai ∩ Aj ∩ Ak)

+ · · ·+ (−1)n+1P(A1 ∩ · · · ∩An).

= Cn
1

(n− 1)!

n!
− Cn

2

(n− 2)!

n!
+ · · ·+ (−1)n+1 1

n!

= 1− 1

2!
+

1

3!
− · · ·+ (−1)n+1 1

n!

≈ 1− e−1 ≈ .632

Note that the convergence is fast.

Example 2.3 Birthday paradox. Suppose that there are n students in class.

Let us suppose that each student’s birthday is on one of 365 days and that all

days are equally probable. What is the probability, Pn, there are at least two

students in the class whose birthdays coincide?

Ω = {ω : ω = (a1, ..., an); ai = 1, ...,M}.

Probability P is determined by

P(ω) =
1

Mn
.

29



Let

A = {ω : ω = (a1, ..., an)}; ai 6= aj; i 6= j},

i.e., the event in which there is no repetition. It is easy to see that |A| = (M)n =

M(M − 1)...(M − n+ 1), therefore

Pn = 1−P(A) = 1− (M)n
Mn

.

n 4 16 22 23 40 64

Pn .016 .284 .476 .507 .891 .997

Exercise 2.6 The Chevalier de Mere problem. What event has a better chance

to occur: (1) rolling a 6 in four tosses of a single fair die or (2) rolling “double-6”

in twenty-four tosses of two fair dice?

2.5 Construction of Probability Spaces:

Uncountable Spaces

Unfortunately, not every problem can be solved within framework of discrete

probability space. Even if it is about a flipping a fair coin, sometimes we have

questions that involve infinite number of flips. For instance, what is the expected

waiting time till the first occurrence of head? Theoretically, we can have 100 or

1000 tails before the first head, therefore, an appropriate sample space would

be:

Ω = {H,T }N
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which is an uncountable set.

Exercise 2.7 Show that Ω = {H,T }N is uncountable.

Earlier we saw that for every probability measure P on (R,B(R)) one can

construct a distribution function associated with P. We now show that converse

is also true. The workhorse that we are going to use in this construction is

Caratheodory’s (extension) theorem. The proof of the theorem is omitted—

Caratheodory’s theorem is important but it will be used only once.

Theorem 2.3 (Caratheodory’s Theorem) Let Ω be a space, A is a field of

its subsets, B is σ(A). Let µ0 be a finite (i.e, µ0(Ω) <∞)) σ-additive measure

on (Ω,A). There exists a measure µ on (Ω,B) such that

µ(A) = µ0(A), for any A ∈ A,

and this extension is unique.

Theorem 2.4 (Lebesgue-Stieltjes Integral) Let F (x) be a cumulative dis-

tribution function on the real line R. There exists a unique probability measure

P on (R,B(R)) such that

P((a, b]) = F (b)− F (a)

for all a, b,−∞ ≤ a < b <∞.

Proof. Let A be the system of finite sums of disjoint intervals of the form (a, b],
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i.e.,

A ∈ A iffA =
n
∑

i=1

(ai, bi].

On this set we define a set function P0 by the following equation:

P0(A) =
n
∑

k=1

[F (bk)− F (ak)], A ∈ A.

It is easy to check that P0 is a well-define finitely additive set function on A

with P0(R) = 1. If we show that P0 is also σ-additive then by Caratheodory’s

theorem there exists a unique probability measure P on (R,B(R)) that extends

P0 on B(R).

So let us show that P0 is σ-additive on A. By Theorem 2.1 one needs to

show that P0 continuous at ∅, that is, if An ↓ ∅, An ∈ A, then P0(An) ↓ 0.

First let us suppose that the sets An belong to a closed interval [−N,N ],

N < ∞. For any interval (a, b] and a′ ↓ a by the right-continuity of F we get

that

P0((a
′, b]) = F (b)− F (a′) → F (b)− F (a) = P0((a, b]).

Thus for any ǫ > 0 we can find Bn ∈ A such that

closure [Bn] ⊂ An, and P0(An)−P0(Bn) ≤ ǫ2−n.

Since
⋂

nAn = ∅ we have
⋂

n[Bn] = ∅. But the sets [Bn] are closed, and
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therefore by Heine-Borel theorem4 there exists n0 = n0(ǫ) such that

n0
⋂

n=1

[Bn] = ∅.

Just note that [−N,N ] is a closed interval, and {[Bn]
c}n≥1 is an open cover of

[−N,N ], because

⋃

n≥1

[Bn]
c =





⋂

n≥1

[Bn]





c

= R.

By Heine-Borel theorem there exists n0 such that

[−N,N ] ⊂
n0
⋃

n=1

[Bn]
c =

(

n0
⋂

n=1

[Bn]

)c

.

Since
⋂n0

n=1[Bn] ⊂ [−N,N ] we get
⋂n0

n=1Bn ⊂ ⋂n0

n=1[Bn] = ∅. Now since An0
⊂

An0−1 ⊂ · · · ⊂ A1 we get

P0(An0
) = P0

(

An0
\

n0
⋂

k=1

Bk

)

= P0

(

n0
⋃

k=1

(An0
\Bk)

)

≤ P0

(

n0
⋃

k=1

(Ak \Bk)

)

≤
n0
∑

k=1

P0(Ak \Bk) ≤
n0
∑

k=1

ǫ2−k ≤ ǫ

That is, for any ǫ > 0 there exists n0 such that for all n > n0 P0(An) ≤

P0(An0
) ≤ ǫ. Therefore, P0(An) ↓ 0.

4 Heine-Borel Theorem: Any cover of a closed interval [a, b] by a system of open intervals
(or, more generally, open sets) has a finite subcover. An exercise: give an example of open
cover of (0, 1) that does not allow a finite subcover.
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Now, let us treat the general case. For any ǫ > 0 one can find (why?) N

such that P0([−N,N ]) > 1− ǫ. Therefore,

P0(An) = P0(An ∩ [−N,N ]) +P0(An ∩ [−N,N ]c)

≤ P0(An ∩ [−N,N ]) + ǫ

But the first term is also small for all sufficiently large n by the first part of the

proof.

Exercise 2.8 Consider a probability space (Ω,F , P ). Let A be a field such

that σ(A) = F . Show that for any B ∈ F and any ǫ > 0 one can find A ∈ A

such that

P (B△A) < ǫ.

2.6 Lebesgue Measure on [0, 1]

If the distribution function is given by

F (x) =































0, x < 0

x, 0 ≤ x ≤ 1

1 x > 1

then the corresponding probability measure λ is called Lebesgue measure on

([0, 1],B([0, 1])). Obviously, Lebegues measure formalizes the concept of length.

By Theorem 2.4 we have a probability measure defined only on Borel σ-field
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B([0, 1]). There is a standard procedure that allows us extend this measure to

a wider σ-field B̄([0, 1]). We say that Λ ⊂ [0, 1] belongs to B̄([0, 1]) if there are

two Borel sets A and B such that A ⊂ Λ ⊂ B and λ(B \A) = 0.

Exercise 2.9 Show that B̄([0, 1]) is a σ-field.

The extension of λ to a set function λ̄ that is defined on B̄([0, 1]) is done as

follows. If Λ ∈ B̄([0, 1]), then there are Borel sets A and B such that A ⊂ Λ ⊂ B

and λ(B \A) = 0. We define λ̄(Λ) = λ(A).

Exercise 2.10 Show that λ̄ is well-defined (that is, if there are Borel sets Ai

and Bi, i = 1, 2 such that Ai ⊂ Λ ⊂ Bi and λ(Bi\Ai) = 0, then λ(A1) = λ(A2)),

and it is a probability measure on ([0, 1], B̄([0, 1]).

Definition 2.3 B̄([0, 1]) is called Lebesgue σ-field, and measure λ̄ is called

Lebesgue measure on ([0, 1], B̄([0, 1])).
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Chapter 3

Random Variables

3.1 Measurability

Definition 3.1 Let (Ω,F ,P) be a probability space. A function

X : Ω 7→ R

is called a F-measurable or random variable if for any Borel set on R

X−1(B) = {ω : X(ω) ∈ B} ∈ F .

Example 3.1 Indicator of an event. Let A ∈ F , and

X(ω) = IA(ω).
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X is a random variable.

Example 3.2 Simple function. Let Ai ∈ F , i = 1, 2, ..., n, and

X(ω) =

n
∑

i=1

xiIAi
(ω).

X is a random variable (prove it!).

Theorem 3.1 Let I be a system of sets on R such that σ(I) = B(R). Then a

function X : Ω 7→ R is a random variable if

{ω : X(ω) ∈ B} ∈ F

for all B ∈ I.

Proof. First note that taking the inverse image preserve the set operations of

union, intersection and complement, i.e.,

X−1(
⋃

t

Bt) =
⋃

t

X−1(Bt)

X−1(
⋂

t

Bt) =
⋂

t

X−1(Bt)

X−1(Bc
t ) = (X−1(Bt))

c

Let

D = {D ∈ B(R) : X−1(D) ∈ F}.
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Since D is a σ-field (why?) we have

I ⊂ D ⊂ B(R)

and

σ(I) ⊂ σ(D) = D ⊂ B(R).

But σ(I) = B(R), therefore D = B(R).

That is, the measurability of a map of Ω to R can be checked on much

smaller collection of events. In particular,

Corollary 3.1 A function X : Ω 7→ R is a random variable if

{ω : X(ω) < x} ∈ F

for all x ∈ R, or

{ω : X(ω) ≤ x} ∈ F

for all x ∈ R.

3.2 Approximation by Simple Random Variables

Proposition 3.1 Let f : R 7→ R be a Borel function1, and X be a random

variable. Then f(X) is a random variable.

1i.e., f−1(B) ∈ B(R) for any B ∈ B(R)
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Proof. Since for any B ∈ B(R), f−1(B) ∈ B(R) we have

{ω : f(X(ω)) ∈ B} = {ω : X(ω) ∈ f−1(B)} ∈ F .

That is, if X is a random variable, then so are Xn, X+ = max(X, 0),

X− = −min(X, 0), and |X | because xn, x+, x−, and |x| are Borel functions.

Exercise 3.1 Show that xn, x+, x−, and |x| are Borel functions.

Definition 3.2 Let (Ω,F ,P) be a probability space. A function

X : Ω 7→ R̄ = [−∞,∞]

is called an extended random variable if X−1(−∞) ∈ F , X−1(∞) ∈ F , and for

any Borel set on R

X−1(B) = {ω : X(ω) ∈ B} ∈ F .

Theorem 3.2 The following two statements are true.

(1) If (extended) random variable X ≥ 0, there is a sequence of simple random

variables X1, X2, ... such that Xn(ω) ↑ X(ω) for all ω ∈ Ω as n→ ∞.

(2) For every (extended) random variable X, there exists a sequence of simple

random variables X1, X2, ... such that |Xn| ≤ |X | and Xn(ω) → X(ω) for all

ω ∈ Ω as n→ ∞.
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Proof. Let us prove the first part. The second one follows from the first because

any X can be presented in the form X+ −X−. For n ≥ 1 let us define

Xn(ω) =

n2n
∑

k=1

k − 1

2n
I(k−1)/2n≤X<k/2n(ω) + nIX≥n(ω).

It is easy to see that Xn(ω) ↑ X(ω).

Exercise 3.2 Show that Xn(ω) ↑ X(ω).

Exercise 3.3 Let Ω = [−1, 1], F = B([−1, 1]), P = λ/2. Consider random

variable

X(ω) = |1− ω|.

Provide explicit formulas for simple random variables X1 and X2 from Theo-

rem 3.2.

3.3 Limits and Measurability

Theorem 3.3 Let X1, X2, ... be a sequence of extended random variables. Then

(1) supXn, inf Xn, lim supXn, and lim inf Xn are also extended variables.

(2) If X(ω) = limXn(ω) exists for every ω ∈ Ω, then X is an extended random

variable.

Proof. (1) Just note that

{ω : supXn > x} =
⋃

n

{ω : Xn > x} ∈ F ,
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and

{ω : inf Xn < x} =
⋃

n

{ω : Xn < x} ∈ F .

This gives us measurability of supXn and inf Xn. The measurability of upper

and lower limits, lim supXn and lim inf Xn, follows from the following observa-

tion:

lim supXn = inf
n

sup
m≥n

Xn, lim inf Xn = sup
n

inf
m≥n

Xn.

(2) We have

{ω : X(ω) < x} = {ω : limXn < x}

= {ω : lim supXn = lim inf Xn} ∩ {ω : lim supXn < x}

= Ω ∩ {ω : lim supXn < x} = {ω : lim supXn < x} ∈ F .

Corollary 3.2 If X and Y are random variables, then X + Y , X − Y , XY ,

and X/Y are also random variables (if they are well defined).

Proof. By Theorem 3.2 there exist sequences of simple random variables Xn

and Yn such that

limXn = X and limYn = Y.

Then

Xn ± Yn → X ± Y,
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XnYn → XY,

Xn

Yn + 1/nIYn=0
→ X

Y
.

Since sum, difference, product and quotient of two simple random variables are

random variables, therefore, by Theorem 3.3 X + Y , X − Y , XY , and X/Y are

random variables as limits of random variables.

3.4 Composition and Measurability

Definition 3.3 Let X be a random variable. The following collection of sets

from F

FX = {X−1(B) : B ∈ B(R)}

is called the σ-field generated by X.

Exercise 3.4 Show that the collection FX is a σ-field.

Exercise 3.5 Let Ω = [0, 1], F = B([0, 1]), P = λ. Consider random variable

X(ω) =















ω, if 0 ≤ ω ≤ 1/2,

1, if 1/2 < ω ≤ 1.

Describe FX .

Let us recall (Proposition 3.1) that if f is a Borel function then f(X) is a

random variable. The converse is also true.
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Theorem 3.4 Let Y be a FX-measurable random variable. Then there is a

Borel function f such that Y = f ◦X.

Proof. Let us introduce two classes:

Φ1 is the class of FX -measurable functions,

Φ2 is the class of FX -measurable functions that can be represented in form f ◦X

for some Borel function f .

It is obvious that Φ2 ⊂ Φ1, therefore all we need to show that Φ1 ⊂ Φ2.

First, let Y = IA, where A ∈ FX . Let us show that Y ∈ Φ2. Since A ∈ FX

there exists B ∈ B(R) such that A = {ω : X(ω) ∈ B}. Let

f(x) = IB(x).

Then Y = IA = IB(X) = f(X), i.e. Y ∈ Φ2.

Second, if Y is a simple function (i.e., it is a sum of indicators), then it also

belongs to Φ2.

Finally, let Y be an arbitrary FX -measurable function. By Theorem 3.2

there exists a sequence of simple measurable functions Yn such that Yn → Y .

As we have shown there are Borel functions fn such that Yn = fn(X), and

fn(X(ω)) → Y (ω). Let

f(x) =















lim fn(x), if limn fn(x) exists,

0, otherwise.
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One can show that f is a Borel function (see exercises) and

Y (ω) = lim
n
fn(X(ω)) = f(X(ω)).

Exercise 3.6 Show that {x : limn fn(x) exists} is a Borel set if fn are Borel

functions.

Exercise 3.7 If f is a Borel function, and B is a Borel set then

g(x) =















f(x), if x ∈ B,

0, otherwise,

is a Borel function.

3.5 Random Elements of Metric Spaces

Definition 3.4 By a metric space is meant a pair (S, d) consisting of a set S

and a metric (distance), i.e., non-negative real function defined for all x, y ∈ S

which satisfies the following three properties:

(1) d(x, y) = 0 iff x = y;

(2) Symmetry: d(x, y) = d(y, x);

(3) Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z).

Definition 3.5 A subset O of metric space (S, d) is called open if for any x ∈ A

there exists an open ball with center x and radius r > 0 Br(x) = {y ∈ S :
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d(x, y) < r} that also is a subset of O.

Definition 3.6 Let O be the class of open subsets of (S, d). We define Borel σ-

field B(S, d) to be the smallest σ-field generated by open sets, i.e. B(S) = σ(O).

Definition 3.7 Let (Ω,F ,P) be a probability space. A function

X : Ω 7→ S

is called random element if for any Borel set B from B(S, d)

X−1(B) = {ω : X(ω) ∈ B} ∈ F .

Definition 3.8 If X is a random variable, then the probability measure PX

defined on (R,B) by PX(B) = P(X ∈ B), where B ∈ B, is called probabil-

ity distribution of random variable X . The cdf of PX , respectively, is called

cumulative distribution function of random variable X .

Definition 3.9 If X is a random element, then the probability measure PX

defined on (S,B(S, d)) by PX(B) = P(X ∈ B), where B ∈ B(S, d), is called

probability distribution of random element X .

Note that there are no cdfs for random elements.

Exercise 3.8 Show that PX is a probability measure (for random variables

and elements).

Examples of metric spaces.
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• Real line R with d0(x, y) = |x− y| is a metric space. Random element on

R is called random variable.

• Real line R with

d1(x, y) =
|x− y|

1 + |x− y|

is a metric space.

• Rn with

d(x,y) =

√

√

√

√

n
∑

i=1

|xi − yi|2

is a metric space. This space is called Euclidean n-space. Random element

on Rn is called random vector.

• The space of sequences, R∞, with metric

d(x,y) =
∞
∑

i=1

2−i |xi − yi|
1 + |xi − yi|

is a metric space. Random elements on R∞ is called random sequence.

• The space of continuous functions on [0, 1], C[0, 1], with metric

d(x,y) = max
0≤t≤1

|x(t)− y(t)|

is a metric space. Random element on C[0, 1] is called random function.

Exercise 3.9 Show that all the metrics above are metrics.

Exercise 3.10 Show that B(R) = B(R, d0) = B(R, d1).
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Chapter 4

Independence

4.1 Definitions of Independence

Let (Ω,F ,P) be a probability space.

Definition 4.1 Let F1,F2, ... be sub-σ-fields of F . These σ-fields are called

independent if for any finite collection {ik}nk=1 and Aik ∈ Fik we have

P(

n
⋂

k=1

Aik) =

n
∏

k=1

P(Aik ).

Definition 4.2 Random variables X1, X2, ... are called independent if the cor-

responding σ-fields σ(X1), σ(X2), ... are independent.

Definition 4.3 Events A1, A2, ... are called independent if σ(IA1
), σ(IA2

), ...

are independent.
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4.2 Basic Criterion of Independence

Example 4.1 Let A and B be two events such that P(A ∩ B) = P(A)P(B).

Then, for instance, we also have

P(Ac ∩Bc) = 1−P(A)−P(B) +P(A ∩B)

= 1−P(A)−P(B) +P(A)P(B)

= (1−P(A))(1 −P(B))

= P(Ac)P(Bc).

The next result generalizes this idea. Independence of σ-fields can be checked

on a smaller classes of events. More specifically, the following result is true.

Theorem 4.1 Suppose that I and J are π-systems, and σ(I) and σ(J ) are

sub-σ-fields of F . The σ-fields σ(I) and σ(J ) are independent iff

P(I ∩ J) = P(I)P(J) for any I ∈ I, J ∈ J .

Proof. Fix I ∈ I such that P(I) > 0. Let us define the probability measure

(check that it is a probability measure) on σ(J ):

PI(B) =
P(I ∩B)

P(I)
, B ∈ σ(J ).

The measures P and PI agree on J . Therefore, by the set induction theorem
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(Theorem 2.2) P and PI agree on σ(J ), i.e.

PI(B) =
P(I ∩B)

P(I)
= P(B) for any B ∈ σ(J ), I ∈ I.

If P(I) = 0, then P(I ∩B) = P(I)P(B) is obviously true.

Now, fix B ∈ σ(J ) such that P(B) > 0. For any A ∈ σ(I) we define

PB(A) =
P(A ∩B)

P(B)
, A ∈ σ(I).

By the first part the measures P and PB agree on I. Therefore, by the set

induction theorem P and PB agree on σ(I), i.e.

PB(A) =
P(A ∩B)

P(B)
= P(A) for any A ∈ σ(I), B ∈ σ(J ).

If P(B) = 0, then P(A ∩B) = P(A)P(B) is obviously true.

By induction this result can be extended to any finite number of π-system.

Corollary 4.1 Two random variables X and Y are independent iff for any

x, y ∈ R

P(X ≤ x ∩ Y ≤ y) = P(X ≤ x)P(Y ≤ y).

Proof. Just note that {ω : X(ω) ≤ x} is a π-system that generates σ(X).

Corollary 4.2 The finite collection of random variables X1, X2, ..., Xn are in-
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dependent iff for any x1, x2, ..., xn ∈ R

P(
n
⋂

i=1

Xi ≤ xi) =
n
∏

i=1

P(Xi ≤ xi).

Finally, let us state here one important result without a proof even though

we will use it all the time.

Theorem 4.2 Let {Fn}n≥1 be a sequence of cdfs. Then there exist a probabil-

ity space (Ω,F ,P) and a sequence of independent random variables {Xn}n≥1

defined on the probability space which sdfs are {Fn}n≥1.

4.3 Borel-Cantelli Lemmas

Next two results are important tools in proving strong limit theorems (for in-

stance, Kolmogorov’s Law of Large Numbers).

Lemma 4.1 (First Borel-Cantelli Lemma) Let {An}n≥1 be a sequence of

events with

∑

n

P(An) <∞.

Then

P(An i.o.) = P(lim sup
n→∞

An) = 0.

Proof. Observe that

P(An i.o) = P( lim
n→∞

⋃

j≥n

Aj)

50



= lim
n→∞

P(
⋃

j≥n

Aj) (continuity of P)

≤ lim
n→∞

∑

j≥n

P(Aj) (subadditivity of P)

= 0,

as a tail of the converging series
∑

n P(An).

Exercise 4.1 Let {Xn} be a sequence of independent Bernoulli random vari-

ables (taking values 1 or -1) with P(Xi = 1) > P(Xi = −1), and let Sn =

X1 + ...+Xn. Show that P(Sn = 0 i.o.) = 0.

Lemma 4.2 (Second Borel-Cantelli Lemma) Let {An}n≥1 be a sequence

of independent events with

∑

n

P(An) = ∞.

Then

P(An i.o.) = P(lim sup
n→∞

An) = 1.

Proof. First note that

(lim sup
n→∞

An)
c = lim inf

n→∞
Ac

n =
⋃

n

⋂

j≥n

Ac
j .

For any i ≥ j ≥ n we have

P(
⋂

i≥j≥n

Ac
j) =

∏

i≥j≥n

(1−P(Aj)).
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Taking i→ ∞ we get

P(
⋂

j≥n

Ac
j) =

∏

j≥n

(1−P(Aj)).

Using inequality 1− x ≤ exp(−x) we obtain

∏

j≥n

(1−P(Aj)) ≤ exp



−
∑

j>n

P(Aj)



 = 0,

that is, P((lim supn→∞ An)
c) = 0.

Example 4.2 Let {Xn}n≥1 be a sequence of independent identically distributed

(i.i.d.) random variables with exponential distribution:

P(Xn > x) = exp(−x), x ≥ 0.

Note that for α > 0

P(Xn > α logn) = n−α,

therefore,

P(Xn > α logn i.o.) =















0, if α > 1,

1, if α ≤ 1.

That is,

P(lim sup
n

(Xn/ logn)) ≥ 1) ≥ P(Xn > logn i.o.) = 1.
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On the other hand, for any k ∈ N,

P(lim sup
n

(Xn/ logn) > 1 + k−1) ≤ P(Xn > (1 + k−1) logn i.o.) = 0.

Thus by monotonicity of P we get

P(lim sup
n

(Xn/ logn) > 1) = P(
⋃

k

{lim sup
n

(Xn/ logn) > 1 + k−1})

≤
∑

k

P(Xn > (1 + k−1) logn i.o.) = 0,

and, as a consequence,

lim sup
Xn

logn
= 1 a.s.

In general, the following result is true.

Lemma 4.3 Let {Xn}n≥1 be random variables, and {an}n≥1 be a sequence of

positive numbers. Suppose that for any 0 < ǫ < 1

P(Xn ≥ (1 + ǫ)an i.o.) = 0,

and

P(Xn ≥ (1− ǫ)an i.o.) = 1.

Then

lim sup
n

Xn

an
= 1 a.s.
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Proof. Since

{ω : lim sup
n

Xn(ω)/an > 1 + ǫ} ⊂ {ω : Xn ≥ (1 + ǫ)an i.o.},

we get

P(lim sup
n

Xn

an
> 1 + ǫ) = 0.

But we also have

{ω : lim sup
n

Xn(ω)/an ≥ 1− ǫ} ⊃ {ω : Xn ≥ (1− ǫ)an i.o.}.

Therefore, it leads us to

P(lim sup
n

Xn

an
≥ 1− ǫ) = 1.

Thus, for X = lim supnXn(ω)/an we obtain that for any 0 < ǫ < 1

P(X > 1 + ǫ) = 0 and P(X < 1− ǫ) = 0.

Note that

P(X > 1) = P(
⋃

k≥1

{X > 1 + 1/k}) ≤
∑

k

P(X > 1 + 1/k) = 0,
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and

P(X < 1) = P(
⋃

k≥1

{X < 1− 1/k}) ≤
∑

k

P(X < 1− 1/k) = 0.

Therefore, P(X = 1) = 1.

Exercise 4.2 Let {Xn}n≥1 be a sequence of i.i.d. random variables with ex-

ponential distribution:

P(Xn > x) = exp(−x), x ≥ 0.

Show that

lim sup
n

Xn

logn+ log logn
= 1 a.s.

Exercise 4.3 Let {Xn}n≥1 be a sequence of i.i.d. random variables with nor-

mal distribution N (0, 1):

P(Xn > x) =

∫ ∞

x

f(y)dy,

where

f(y) =
1√
2π
e−y2/2.

(a) Show that

lim
x→∞

P(Xn > x)

f(x)/x
= 1

55



(b) Show that

lim sup
n

Xn√
2 logn

= 1 a.s.

Exercise 4.4 Let {Xn}n≥1 be a sequence of i.i.d. random variables with Pois-

son distribution with parameter λ:

P(Xn = x) = e−λλ
x

x!

(a) Show that

λn

n!
e−λ ≤ P(Xn ≥ n) ≤ λn

n!

(b) Show that

lim sup
Xn

logn/ log(logn)
= 1 a.s.

4.4 Tail σ-field. Kolmogorov’s 0-1 Theorem

Let {Xn}n≥1 be a sequence of random variables. For any 1 ≤ m ≤ k ≤ ∞ we

denote

Fk
m = σ(Xm, ..., Xk) = σ(

k
⋃

i=m

σ(Xi)).

Exercise 4.5 Show that A =
⋃∞

i=1 F i
1 is a field, and F∞

1 = σ(A).

Definition 4.4 The tail σ-field T is defined as

T =
⋂

n

F∞
n .
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Example 4.3 The following events belongs to the tail σ-field:

• A1 = {∑nXn converges}.

• A2 = {Xn ∈ In i.o.} for In ∈ B(R). Note that if {Xn}n≥1 are independent

then

P(A2) = 0 ⇔
∑

P(Xn ∈ In) <∞,

P(A2) = 1 ⇔
∑

P(Xn ∈ In) = ∞.

That is, the probability of A2 can assume only two values: 0 or 1.

• A3 = {lim supnXn <∞}.

• A4 = {lim supn(X1 + ...+Xn)/n <∞}.

• A5 = {lim supn(X1 + ...+Xn)/n < c}.

• A6 = {(X1 + ...+Xn)/n converges}.

• A7 = {lim supn(X1 + ...+Xn)/bn = 1} for bn ↑ ∞

Example 4.4 The following event

B = {lim
n
(X1 + ...+Xn) exist and is less than c}

does not belong to the tail σ-field.

Theorem 4.3 (Kolmogorov’s 0-1 Law) Let {Xn}n≥1 be a sequence of in-

dependent random variables, and let A ∈ T . The probability of A can take only

the values 0 or 1.
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Proof. Note that A ∈ F∞
1 , and there exist sets An ∈ Fn

1 such that P(A△An) →

0 as n→ ∞ (show it!). We have then

P(An) → P(A), P(An ∩ A) → P(A).

But An ∈ Fn
1 and A ∈ F∞

n+1, therefore, A and An are independent. Hence we

get

P(An ∩ A) → P(A), and P(An ∩ A) = P(An)P(A) → P(A)2.

That is, P(A) = P(A)2, and, as a consequence, P(A) = 0 or 1.

Exercise 4.6 Show that for any A ∈ F∞
1 there exist sets An ∈ Fn

1 such that

P(A△An) → 0 as n→ ∞.

Exercise 4.7 Show that if X is measurable with respect to the tail σ-field

which is generated by a sequence of independent random variables, then there

is a constant c such that P(X = c) = 1.
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Chapter 5

Expectation

5.1 Expectation of Simple Random Variables

First we introduce the expectation for simple random variables. Recall that X

is a simple random variable if it can be presented in the following form:

X =
n
∑

i=1

ai1Ai
,

where |ai| <∞, and
∑n

i=1 Ai = Ω.

Definition 5.1 Define for simple random variable X the expectation as

E(X)(=

∫

XdP) =

n
∑

i=1

aiP(Ai).

Properties of the expectation of simple random variables.
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• E(1) = 1, E(1A) = P(A).

• If X ≥ 0, then E(X) ≥ 0.

• (linearity) E(αX + βY ) = αE(X) + βE(Y ).

Proof. Let X =
∑n

i=1 ai1Ai
and Y =

∑m
j=1 bj1Bj

. Then

αX + βY =
∑

i,j

(αai + βbj)1AiBj
.

Thus

E(αX + βY ) =
∑

i,j

(αai + βbj)P(AiBj)

=
∑

i,j

αaiP(AiBj) +
∑

i,j

βbjP(AiBj)

= α

n
∑

i=1

ai

m
∑

j=1

P(AiBj) + β

m
∑

j=1

bj

n
∑

i=1

P(AiBj)

= α
n
∑

i=1

aiP(Ai) + β
m
∑

j=1

bjP(Bj)

= αE(X) + βE(Y ).

• (monotonicity) If X ≤ Y then E(X) ≤ E(Y ).

• (independence) If X and Y are independent, then E(XY ) = E(X)E(Y )

(prove it!).

• |E(X)| ≤ E(|X |)
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Proof. Just note that

|E(X)| = |
∑

i

aiP(Ai)| ≤
∑

i

|ai|P(Ai) = E(|X |).

5.2 Expectation (Lebesgue Integral)

We know that any nonnegative random variable X from (Ω,F ,P) can be ap-

proximated by a sequence of nonnegative simple random variables Xn such that

for every ω ∈ Ω Xn(ω) ↑ X(ω). This allows us to define the expectation of X .

Definition 5.2 Define for nonnegative random variable X the expectation as

E(X) = lim
n

E(Xn),

where {Xn}n≥1 is a sequence of nonnegative simple random variables Xn such

that for every ω ∈ Ω Xn(ω) ↑ X(ω).

First note that the limit exists (maybe +∞) because E(Xn) is monotone in-

creasing. But we also have to show that the expectation of X does not depend

on the choice of the approximating sequence. That is, if Xn(ω) ↑ X(ω) and

X ′
n(ω) ↑ X(ω) then

lim
n

E(Xn) = lim
n

E(X ′
n).
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Lemma 5.1 Let Xn and Y be nonnegative simple random variables, and

Xn ↑ X ≥ Y.

Then

lim
n

E(Xn) ≥ E(Y ).

Proof. Let ǫ > 0 and

An = {ω : Xn ≥ Y − ǫ}.

Note that An ↑ Ω and

Xn = Xn1An
+Xn1Ac

n
≥ Xn1An

≥ (Y − ǫ)1An
.

Therefore,

E(Xn) ≥ E((Y − ǫ)1An
) = E(Y 1An

)− ǫP(An)

= E(Y )− E(Y 1Ac
n
)− ǫP(An)

≥ E(Y )− CP(Ac
n)− ǫ,

where C = maxω Y (ω). Since ǫ is arbitrary and P(Ac
n) → 0, the proof is

finished.

Exercise 5.1 Show that this lemma implies well definition of E(X), that is,

lim
n

E(Xn) = lim
n

E(X ′
n).
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Exercise 5.2 Consider random variable

X =
∑

k≥1

ak1Ak
,

where ak ≥ 0 and
∑

k≥1 Ak = Ω. Show that

E(X) =
∑

k≥1

akP(Ak).

Definition 5.3 Define for random variable X the expectation as

E(X) = E(X+)−E(X−),

if at least one of E(X+) and E(X−) is finite. The expectation of X is said to

be finite if both E(X+) and E(X−) are finite (or E(|X |) <∞).

5.3 Properties of Expectation

Let us give now some properties of the expectation of arbitrary random variable

X .

• Let c 6= 0, and let E(X) exist. Then E(cX) also exists, and

E(cX) = cE(X).

Proof. We know that this true for simple random variable. Now let us
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assume first that X ≥ 0 and c > 0. Let Xn ↑ X , where Xn are simple

random variables. Then cXn ↑ cX , and

E(cX) = lim
n

E(cXn) = c lim
n

E(Xn) = cE(X).

In case of arbitraryX we need to employ the representationX = X+−X−.

(Do it!)

• (monotonicity) Let X ≤ Y , then E(X) ≤ E(Y ).

Proof. Again we really need to show it only for nonnegative X and Y ,

that is, when 0 ≤ X ≤ Y . Let Xn ↑ X and Ym ↑ Y . For any fix n by

Lemma 5.1 we have

E(Y ) = lim
m

E(Ym) ≥ E(Xn),

and therefore,

E(Y ) = lim
n

E(Y ) ≥ lim
n

E(Xn) = E(X).

Now, note that in the general case

X ≤ Y ⇒ X+ ≤ Y +, and X− ≥ Y −.
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By the first part we have

E(X+) ≤ E(Y +), and E(X−) ≥ E(Y −),

and by the definition of expectation we obtain

E(X) ≤ E(Y ).

• If E(X) exists then |E(X)| ≤ E(|X |)

Proof. Just note that −|X | ≤ X ≤ |X |, therefore, by the first two prop-

erties we get

−E(|X |) ≤ E(X) ≤ E(|X |).

• If E(X) exists, then for any event A from F E(X1A) exists. If E(X) is

finite, then E(X1A) is also finite.

Proof. Note that (X1A)
+ = X+1A ≤ X+ and (X1A)

− = X−1A ≤ X−,

so by the monotonicity we get the needed result.

• (additivity) If X and Y are nonnegative or with finite expectations, then

E(X + Y ) = E(X) +E(Y ).
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Proof. Let us prove it for nonnegative random variables. Let Xn and Yn

be approximating sequences of simple random variables, then observe that

E(Xn + Yn) = E(Xn) +E(Yn),

Xn + Yn ↑ X + Y,

E(Xn + Yn) ↑ E(X + Y ),E(Xn) ↑ E(X), and E(Yn) ↑ E(Y ).

Definition 5.4 We say that a property holds almost surely (P-almost surely,

P-a.s, a.s.) if there is a set N with P(N ) = 0 such that the property holds for

every point outside N .

Now we will present some properties of integrable random variables that

holds “almost surely”.

• If X = 0 a.s., then E(X) = 0.

Proof. Assume that X ≥ 0. Let Xn be approximating sequence of simple

random variables. If Xn =
∑

xkn1Ak
≤ X , and xkn 6= 0, then P(Ak) = 0,

and, as a result, E(Xn) = 0, and E(X) = limE(Xn) = 0.

• If X = Y a.s. and their expectation are finite, then E(X) = E(Y ). (Prove

it!)

• Let X ≥ 0, and E(X) = 0. Then X = 0 a.s.
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Proof. Define

A = {ω : X(ω) > 0}, An = {ω : X(ω) > 1/n}.

Obviously

0 ≤ X1An
≤ X1A ≤ X,

and by monotonicity we get

0 ≤ E(X1An
) ≤ E(X) = 0.

But

0 = E(X1An
) ≥ 1

n
P(An).

That is, P(An) = 0 for all n. But An ↑ A and by continuity of the

probability

P(A) = limP(An) = 0.

• Let X and Y be random variables with finite expectation. If for all A ∈ F

E(X1A) ≤ E(Y 1A), then X ≤ Y a.s.

Proof. Define

A = {ω : X(ω) > Y (ω)}.
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For this event we have

E(Y 1A) ≤ E(X1A) ≤ E(Y 1A).

That is, E(X1A) = E(Y 1A), and by linearity E((X − Y )1A) = 0. By the

previous property (X − Y )1A = 0 a.s. Therefore, 0 = P((X − Y )1A 6=

0) = P((X − Y )1A > 0) = P(A).

5.4 Taking Limits under Expectation Sign

Theorem 5.1 (Monotone Convergence Theorem) Let Y,X,X1, X2, ... be

random variables.

(1) If Xn ≥ Y for all n, E(Y ) > −∞, and Xn(ω) ↑ X(ω) for every ω, then

E(Xn) ↑ E(X).

(2) If Xn ≤ Y for all n, E(Y ) <∞, and Xn(ω) ↓ X(ω) for every ω, then

E(Xn) ↓ E(X).

Proof. Note that (2) follows from (1) if we substitute the random variables by

their negatives, so we need to prove only (1).

First consider case when Y ≥ 0. For every k ≥ 1 define {Xnk} as an approx-

imating Xk sequence of simple random variables. Define Zn = max1≤k≤nXnk.
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Thus, we get the following diagram:

X1 ≤ X2 ≤ X3 ≤ · · · ≤ Xk ≤ · · · ≤ X

≤ ≤ ≤ ≤

...
...

...
...

≤ ≤ ≤ ≤

Z3 X31 X32 X33 · · · X3k · · ·

≤ ≤ ≤ ≤

Z2 X21 X22 X23 · · · X2k · · ·

≤ ≤ ≤ ≤

Z1 X11 X12 X13 · · · X1k · · ·

Therefore, we have

Zn−1 ≤ Zn = max
1≤k≤n

Xnk ≤ max
1≤k≤n

Xk = Xn.

Let Z = limn Zn. Since for 1 ≤ k ≤ n

Xnk ≤ Zn ≤ Xn,

by taking limits as n→ ∞ we get that

Xk ≤ Z ≤ X

which means that Z = X . Since Zn is a “simple approximation” of Z, we get

E(X) = E(Z) = lim
n

E(Zn) ≤ lim
n

E(Xn) ≤ E(X).

(Note that the last inequality is obvious—why? Also why do we need here

69



Y ≥ 0?)

Now let us look at the general case. If E(Y ) = ∞, then by monotonicity

E(X) = ∞ also. Now if E(Y ) <∞, then E|Y | <∞. Then Xn − Y ≥ 0, by the

first part

E(Xn − Y ) ↑ E(X − Y ),

then by linearity

E(Xn)−E(Y ) ↑ E(X)−E(Y ),

and, since E(Y ) <∞ we have

E(Xn) ↑ E(X).

Exercise 5.3 Show that convergence for every ω in the theorem can be substi-

tuted by a.s. convergence.

Corollary 5.1 Let {Xn}n≥1 be a sequence of nonnegative random variables.

Then

E(
∑

n

Xn) =
∑

n

E(Xn).

Theorem 5.2 (Fatou’s Lemma) Let Y,X1, X2, ... be random variables.

(1) If Xn ≥ Y for all n, and E(Y ) > −∞, then

E(lim inf
n

Xn) ≤ lim inf
n

E(Xn).
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(2) If Xn ≤ Y for all n, and E(Y ) <∞, then

lim sup
n

E(Xn) ≤ E(lim sup
n

Xn).

(3) If |Xn| ≤ Y for all n, and E(Y ) <∞, then

E(lim inf
n

Xn) ≤ lim inf
n

E(Xn) ≤ lim sup
n

E(Xn) ≤ E(lim sup
n

Xn).

Proof. We really need to prove only (1). Define Zn = infm≥nXm. Then

lim infnXn = limn infm≥nXm = limn Zn, and Zn ↑ lim infnXn. By the mono-

tone convergence theorem we obtain

E(lim inf
n

Xn) = E(lim
n
Zn) = lim

n
E(Zn) = lim inf

n
E(Zn) ≤ lim inf

n
E(Xn),

because obviously Zn ≤ Xn.

Exercise 5.4 Consider the probability space ([0, 1],B([0, 1]), λ). Let Xn(ω) =

n21ω<1/n. Check the Fatou’s lemma for the random variables.

Theorem 5.3 (Dominated Convergence Theorem) Let Y,X1, X2, . . . be

random variables such that |Xn| ≤ Y for all n, E(Y ) < ∞, and Xn → X

a.s. Then E(|X |) <∞ and as n→ ∞

E(Xn) → E(X),
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and

E|Xn −X | → 0.

Proof. Since lim infnXn = lim supnXn = limnXn = X by Fatou’s lemma we

have (with = instead of ≤)

E(X) = E(lim inf
n

Xn) = lim inf
n

E(Xn) = lim sup
n

E(Xn) = E(lim sup
n

Xn) = E(X),

that is, E(Xn) → E(X). The second equation can be obtained by considering

|Xn −X | and observing that it is dominated by 2Y .

Corollary 5.2 Let Y,X1, X2, ... be random variables such that |Xn| ≤ Y for all

n, E|Y |p <∞ for p > 0, and Xn → X a.s.. Then E|X |p <∞ and as n→ ∞

E|Xn −X |p → 0.

Theorem 5.4 Let X and Y be independent random variables with finite expec-

tations. Then E|XY | <∞ and

E(XY ) = E(X)E(Y ).

Proof. Let us prove it for nonnegative X and Y (the general case then can be

done via the standard representation X = X+ −X−). Let

Xn =
∑

k≥1

k

n
1k/n≤X<(k+1)/n,
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and

Yn =
∑

k≥1

k

n
1k/n≤Y <(k+1)/n.

It is easy to see that by the dominated convergence theorem we have

lim
n

E(Xn) = E(X) and lim
n

E(Yn) = E(Y ).

By independence we also have

EXnYn =
∑

k,m≥1

km

n2
E[1k/n≤X<(k+1)/n1m/n≤Y <(m+1)/n]

=
∑

k,m≥1

km

n2
E[1k/n≤X<(k+1)/n]E[1m/n≤Y <(m+1)/n]

= E(Xn)E(Yn).

Finally, note

|E(XY )−E(XnYn)| ≤ E|XY −XnYn|

≤ E(X |Y − Yn|) +E(Yn|X −Xn|)

≤ 1

n
E(X) +

1

n
E(Y ) → 0.

That is, E(XY ) = limn E(XnYn) = limn E(Xn)E(Yn) = E(X)E(Y )

Exercise 5.5 This proof is a good illustration of a typical application of the

dominated convergence theorem. However, the right way of doing it is via

simple random variable approximations that are introduced in Theorem 3.2.

Note that a “simple” approximation is less accurate, but it is monotone. Prove
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the theorem using the simple random variable approximation.

5.5 Uniform Integrability

Now we provide a more delicate condition that allows us to take limits under

the expectation sign.

Definition 5.5 We say that a family of random variables {Xt}t∈T is uniformly

integrable iff

sup
t

E(|Xt|1|Xt|>c) → 0, as c→ ∞.

Exercise 5.6 Show that “|Xn| < Y,E(Y ) < ∞” makes the family {Xn}n≥1

uniformly integrable.

The next theorem shows what we really need to have to obtain the implica-

tion of the Fatou’s lemma.

Theorem 5.5 Let {Xn}n≥1 be uniformly integrable.

(1) Then

E(lim inf
n

Xn) ≤ lim inf
n

E(Xn) ≤ lim sup
n

E(Xn) ≤ E(lim sup
n

Xn).

(2) If Xn → X a.s. then E(X) <∞ and as n→ ∞

E(Xn) → E(X),
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and

E|Xn −X | → 0.

Proof. (1) For every c > 0

E(Xn) = E[Xn1Xn≤c] +E[Xn1Xn>c],

and for any ǫ > 0 we can find c such that

sup
n

|E[Xn1Xn>c]| < ǫ.

Therefore, for such c

lim sup
n

E(Xn) ≤ lim sup
n

E(Xn1Xn≤c) + ǫ.

By Fatou’s lemma and by observing that Xn1Xn≤c ≤ Xn we get

lim sup
n

E(Xn)− ǫ ≤ lim sup
n

E(Xn1Xn≤c)

≤ E(lim sup
n

Xn1Xn≤c)

≤ E(lim sup
n

Xn).

Since ǫ is arbitrary, we obtain that lim supn E(Xn) ≤ E(lim supnXn). In similar

way we can prove E(lim infnXn) ≤ lim infn E(Xn).

(2) Take a look at the proof of the dominated convergence theorem.
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Theorem 5.6 Let 0 ≤ Xn → X a.s., and E(Xn) < ∞. Then E(Xn) →

E(X) <∞ if and only if the family {Xn}n≥1 is uniformly integrable.

Exercise 5.7 We already have established “if” part, prove the “only if” part.

Lemma 5.2 If {Xn}n≥1 be uniformly integrable, then

sup
n

E|Xn| <∞.

Proof. Just note that

sup
n

E|Xn| = sup
n

[

E[|Xn|1|Xn|≤c] +E[|Xn|1|Xn|>c]
]

,

and let c be large enough to make supn E[|Xn|1|Xn|>c] < 1, then supn E|Xn| <

c+ 1.

But supn E|Xn| < ∞ is not enough for the uniform integrability. We need

a bit more.

Lemma 5.3 Let {Xn}n≥1 be integrable, and let G(·) be a nonnegative increas-

ing function such that limtG(t)/t = ∞. If

sup
n

E[G(|Xn|)] =M <∞,

then {Xn}n≥1 is uniformly integrable.

Proof. For any (large) A we can find c large enough to guarantee G(t)/t > A if
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t > c. For that c we have

sup
n

E[|Xn|1|Xn|>c] = sup
n

E[G(|Xn|)
|Xn|

G(|Xn|)
1|Xn|>c]

≤ 1

A
sup
n

E[G(|Xn|)1|Xn|>c] ≤
M

A

i.e. it can be made as small as we want.

Example 5.1 For instance, G(t) = |t|1+ǫ for ǫ > 0 fits the description.

Exercise 5.8 Give an example of {Xn}n≥1 for which supn E|Xn| <∞, but the

family is still not uniformly integrable.

5.6 Inequalities for Expectations

Proposition 5.1 (Chebyshev’s Inequality) Let X be nonnegative random

variable. Then

P(X > ǫ) ≤ E(X)

ǫ
,

in particular, for any random variable X we have

P(|X | > ǫ) ≤ E(X2)

ǫ2
,

and

P(|X −E(X)| > ǫ) ≤ E(X −EX)2

ǫ2
=

Var(X)

ǫ2
.
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Proof. Just observe

E(X) ≥ E(X1X>ǫ) ≥ ǫE(1X>ǫ) ≥ ǫP(X > ǫ).

Proposition 5.2 (Cauchy-Shwarz’s Inequality) Let X and Y be random

variables with E(X2) <∞ and E(Y 2) <∞. Then

(E|XY |)2 ≤ E(X2)E(Y 2).

Proof. When E(X2) = 0 or E(Y 2) = 0 the inequality is obvious (still, show it!).

So suppose that both E(X2) > 0 and E(Y 2) > 0. First note that 2|XY | ≤

X2+Y 2, therefore, E|XY | <∞. Now, let us look at the quadratic polynomial:

p(t) = E(|X |t+ |Y |)2 = E|X |2t2 + 2E|XY |t+E|Y |2 = At2 + 2Bt+ C.

Since p(t) ≥ 0, we get B2 ≤ AC.

Definition 5.6 A Borel function f : R 7→ R is said to be convex iff for any y

there is a number a(y) such that

f(x) ≥ f(y) + (x− y)a(y)

for all x ∈ R.
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Proposition 5.3 (Jensen’s Inequality) Let f be a convex Borel function,

and let X be random variables with a finite expectation. Then

f(E(X)) ≤ E(f(X)).

Proof. By convexity we have (assuming x = X , y = E(X))

f(X) ≥ f(E(X)) + (X −E(X))a(E(X)),

and after taking the expectation we obtain Jensen’s inequality.

Proposition 5.4 (Lyapunov’s Inequality) If 0 < s < r, then

(E|X |s)1/s ≤ (E|X |r)1/r.

Proof. Consider random variable |X |s, and apply Jensen’s inequality to convex

function f(·) = | · |r/s.

Proposition 5.5 (Hölder’s Inequality) Let X and Y be random variables

with E|X |p <∞ and E|Y |q <∞ for some p, q > 1, 1/p+ 1/q = 1. Then

E(|XY |) ≤ (E|X |p)1/p(E|Y |q)1/q.

Proof. If E|X |p = 0 or E|Y |q = 0, the inequality is trivial. So, assume that

both E|X |p and E|Y |q are positive. Using the fact that ex is convex one can
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show that for any a, b ≥ 0 we have

ab ≤ ap

p
+
bq

q
. (5.1)

Let

a =
|X |

(E|X |p)1/p , and b =
|Y |

(E|Y |q)1/q .

That is, we have

|XY |
(E|X |p)1/p(E|Y |q)1/q ≤ 1

p

∣

∣

∣

∣

X

(E|X |p)1/p
∣

∣

∣

∣

p

+
1

q

∣

∣

∣

∣

Y

(E|Y |q)1/q
∣

∣

∣

∣

q

.

Taking expectation we get

E|XY |
(E|X |p)1/p(E|Y |q)1/q ≤ 1.

Proposition 5.6 (Minkovski’s Inequality) Let X and Y be random vari-

ables with E|X |p < ∞ and E|Y |p < ∞ for some p ≥ 1. Then E|X + Y |p < ∞

and

(E|X + Y |p)1/p ≤ (E|X |p)1/p + (E|Y |p)1/p.

Proof. Using convexity of | · |p one can show (do it!) that for any a, b > 0 and

p ≥ 1 we have

(a+ b)p ≤ 2p−1(ap + bp),
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i.e., we have E|X + Y |p <∞.

When p = 1 the inequality is trivial. Consider the case when p > 1. Since

p− 1 = p/q, by Hölder’s inequality we have

E|X + Y |p = E|X + Y ||X + Y |p/q

≤ E|X ||X + Y |p/q +E|Y ||X + Y |p/q

≤ (E|X |p)1/p(E|X + Y |p)1/q + (E|Y |p)1/p(E|X + Y |p)1/q

= [(E|X |p)1/p + (E|Y |p)1/p](E|X + Y |p)1/q

By dividing the left and right sides of the inequality by (E|X + Y |p)1/q we get

the result.

That is, if we ignore a.s. difference between random variables with finite

p-moments, the function d(X,Y ) = (E|X − Y |p)1/p is a metric.

5.7 Radon-Nikodým Theorem

Definition 5.7 We say that a probability measure Q on (Ω,F) is absolutely

continuous with respect to P if

P(A) = 0 ⇒ Q(A) = 0.

Proposition 5.7 Let X be a nonnegative random variable with E(X) = 1.

Then

Q(A) = E(X1A)

81



is a probability measure and it is absolutely continuous with respect to P.

Proof. Consider first a simple random variable X =
∑n

k=1 xk1Ak
. If P(A) = 0

then

E(X1A) =

n
∑

k=1

xkP(Ak ∩A) = 0.

Thus the proposition holds if X is a simple random variable. Now for an arbi-

trary X first we construct a sequence of simple random variables Xn ↑ X the

by the monotone convergence theorem for A with P(A) = 0 we get

Q(A) = E(X1A) = E( lim
n→∞

Xn1A) = lim
n→∞

E(Xn1A) = 0.

The converse is also true (but much harder to prove) and it is called Radon-

Nikodým Theorem.

Theorem 5.7 (Radon-Nikodým Theorem) If a probability measure Q on

(Ω,F) is absolutely continuous with respect to P then there exist a nonnegative

random variable X (called Radon-Nikodým derivative) with E(X) = 1 such that

Q(A) = E(X1A).

5.8 Change of Variables in a Lebesgue Integral

Theorem 5.8 (Change of Variables in a Lebesgue Integral) Let X be a

random variable with probability distribution PX
1. If h is a Borel function and

1The probability measure PX is defined on (R,B) by PX(B) = P(X ∈ B), where B ∈ B.
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for A ∈ B either of the integrals,

∫

A

h(x)PX(dx) =

∫

R

1A(x)h(x)PX (dx)

or
∫

X−1(A)

h(X(ω))P(dω) = E
[

1X−1(A)h(X(ω))
]

,

exists then
∫

A

h(x)PX(dx) =

∫

X−1(A)

h(X(ω))P(dω). (5.2)

Proof. First consider case when h(x) = 1B(x), where B ∈ B. Observe that

X−1(A) ∩X−1(B) = X−1(A ∩B). Therefore,

∫

A

1B(x)PX(dx) =

∫

R

1A(x)1B(x)PX(dx) =

∫

R

1AB(x)PX(dx) = PX(AB)

= P(X−1(AB)) = E
[

1X−1(AB)

]

= E
[

1X−1(A)1X−1(B)

]

=

∫

X−1(A)

1B(X(ω))P(dω).

Now, if we have (5.2) for indicators, then we have it for nonnegative simple

random variables, and, therefore, we also have (5.2) for nonnegative random

variables. The general case is treated as usual via the representation h = h+ −

h−.

In particular,

E(h(X)) =

∫

Ω

h(X(ω))P(dω) =

∫

R

h(x)PX(dx) =

∫

R

h(x)FX (dx),
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i.e., to compute the expectation it is not necessary to know P, knowing the

distribution function FX is enough.

Exercise 5.9 Suppose that

FX(x) =

∫ x

−∞
fX(y)dy,

where fX is a non-negative Riemann-integrable function. Show that the Lebesgue-

Stieltjes integral
∫

R

h(x)FX (dx)

is equal to the Riemann integral

∫ +∞

−∞
h(x)fX(x)dx

for any non-negative Borel function h.

5.9 Product Spaces and Fubini’s Theorem

Definition 5.8 By the Cartesian product of two arbitrary sets A and B, de-

noted by A×B, we mean the set of all ordered pairs (a, b), a ∈ A, b ∈ B.

Let us consider two measurable spaces with two σ-finite2 measures (Ω1,F1, µ1)

and (Ω2,F2, µ2), and a measurable space (Ω1 ×Ω2,F1 ⊗F2), where F1 ⊗F2 =

σ({A1 ×A2 : A1 ∈ F1, A2 ∈ F2}), that is, the smallest σ-field that contains the

2A measure µ is said to be σ-finite if Ω can be partitioned into
∑

i Ai in such way that
µ(Ai) < ∞ for all i.
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set of rectangles with measurable sides.

Theorem 5.9 There exists the unique measure µ1⊗µ2 defined on (Ω1×Ω2,F1⊗

F2) in such a way that

µ1 ⊗ µ2(A1 ×A2) = µ1(A1)µ2(A2),

where A1 ∈ F1 and A2 ∈ F2.

The product space is the following triple (Ω1 × Ω2,F1 ⊗F2, µ1 ⊗ µ2).

Theorem 5.10 (Fubini’s Theorem) Let f(·, ·) be a F1⊗F2-measurable func-

tion on Ω1 × Ω2 such that

∫

Ω1×Ω2

|f(ω1, ω2)|dµ1 ⊗ µ2 <∞.

Then the integrals
∫

Ω1
|f(ω1, ω2)|dµ1 and

∫

Ω2
|f(ω1, ω2)|dµ2

• are defined for all ω1 and ω2,

• are respectively F2- and F1-measurable functions with

µ2{ω2 :

∫

Ω1

|f(ω1, ω2)|dµ1 = ∞} = 0,

and

µ1{ω1 :

∫

Ω2

|f(ω1, ω2)|dµ2 = ∞} = 0.
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• and

∫

Ω1×Ω2

f(ω1, ω2)dµ1 ⊗ µ2 =

∫

Ω2

[∫

Ω1

f(ω1, ω2)dµ1

]

dµ2

=

∫

Ω1

[∫

Ω2

f(ω1, ω2)dµ2

]

dµ1.

Corollary 5.3 If
∫

Ω1

[∫

Ω2

|f(ω1, ω2)|dµ2

]

dµ1 <∞

the Fibini’s theorem will hold.

Example 5.2 Let X be a non-negative random variable on (Ω,F ,P). Consider

(Ω× R+,F ⊗ B(R+),P⊗ λ) and

f(ω, x) = 1A(ω, x), where A = {(ω, x) : 0 ≤ x ≤ X}.

Note that
∫

R+

f(ω, x)dλ = X(ω)

and
∫

Ω

f(ω, x)dP = P(X ≥ x).

Therefore, by Fubini’s theorem we obtain

P⊗ λ(A) =

∫

Ω

X(ω)dP = E(X)

=

∫

R+

P(X ≥ x)dλ =

∫ +∞

0

P(X ≥ x)dx.
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Example 5.3 Consider a pair of random variables (X,Y ) and suppose that

their joint distribution has a density, i.e.

P((X,Y ) ∈ B) =

∫

B

fXY (x, y)dxdy,

whereB ∈ B(R2) and the integral is taken with respect two-dimensional Lebesgue

measure.

Note that for A ∈ B(R) by Fibini’s theorem we get

P(X ∈ A) = P((X,Y ) ∈ A×R) =

∫

A×R

fXY (x, y)dxdy =

∫

A

[∫

R

fXY (x, y)dy

]

dx.

That is, the densities of X and Y exist and they are given by

fX(x) =

∫

R

fXY (x, y)dy

and

fY (x) =

∫

R

fXY (x, y)dx.

According to Corollary 4.1 the random variables X and Y are independent

iff for any x, y ∈ R

P(X ≤ x ∩ Y ≤ y) = P(X ≤ x)P(Y ≤ y).

Now one can show the following is true.

Corollary 5.4 If a joint density fXY (x, y) exists then the random variables X
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and Y are independent iff

fXY (x, y) = fX(x)fY (y)

almost surely with respect two-dimensional Lebesgue measure.

Proof. Sufficiency. Just note that

P(X ≤ x ∩ Y ≤ y) =

∫

(−∞,x]×(−∞,y]

fXY (t, s)dtds

=

∫

(−∞,x]×(−∞,y]

fX(t)fY (s)dtds

=

∫

(−∞,x]

fX(t)dt

∫

(−∞,y]

fY (s)ds

= P(X ≤ x)P(Y ≤ y).

Necessity. If X and Y are independent then

P(X ≤ x ∩ Y ≤ y) = P(X ≤ x)P(Y ≤ y).

That is, by Fubini’s theorem

∫

(−∞,x]×(−∞,y]

fXY (t, s)dtds =

∫

(−∞,x]

fX(t)dt

∫

(−∞,y]

fY (s)ds

=

∫

(−∞,x]×(−∞,y]

fX(t)fY (s)dtds.
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Therefore, for any B ∈ B(R2) we have that

∫

B

fXY (t, s)dtds =

∫

B

fX(t)fY (s)dtds

which gives us (see page 67) that

fXY (x, y) = fX(x)fY (y)

almost surely with respect two-dimensional Lebesgue measure.

Exercise 5.10 Consider the following product space

([0, 1]× [0, 1],B([0, 1])⊗ B([0, 1]), λ⊗ µ),

where λ is the Lebesgue measure, and µ just counts the number of elements in

a set. Let A be a diagonal {(x, y) ∈ [0, 1]× [0, 1] : x = y}.

a) Argue that A ∈ B([0, 1])⊗ B([0, 1]).

b) Calculate
∫

[0,1]

[

∫

[0,1]

1A(x, y)dλ

]

dµ

and
∫

[0,1]

[

∫

[0,1]

1A(x, y)dµ

]

dλ.

c) Why do you think Fubini’s Theorem does not hold for this example?
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5.10 Variance, Covariance and Covariance

Matrix

Definition 5.9 Let X be a random variable with EX2 < ∞. The variance is

defined by

Var(X) = E(X −EX)2 = E(X2)− (EX)2.

Definition 5.10 Let X,Y be random variables with EX2 <∞ and EY 2 <∞.

The covariance of X and Y is

Cov(X,Y ) = E[(X −EX)(Y −EY )] = EXY −EXEY.

Exercise 5.11 Find the variance for uniform, normal, Poisson, and binomial

distributions.

Properties of variance.

• Var(X) ≥ 0.

• Var(c) = 0, where c is a constant.

• If Var(X) = 0, then P(X = c) = 1 and c = E(X).

• Var(cX) = c2Var(X).

• Var(aX + bY )2 = a2Var(X) + b2Var(Y ) + 2abCov(X,Y ).

• If X and Y are independent, then Cov(X,Y ) = 0 (because of Theo-

rem 5.4), and Var(X + Y ) = Var(X) +Var(Y ).
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Exercise 5.12 Give an example of two dependent random variables which co-

variance is equal to 0.

Definition 5.11 Let X = (X1, . . . , Xn)
⊤ be a random (column) vector with

EX2
i < ∞ for i = 1, . . . , n. Vector µ = (EX1, . . . ,EXn)

⊤ is called the expec-

tation of X. The covariance matrix of random vector X is the following n× n

matrix:

ΣX = E(X− µ)(X − µ)⊤

= E(XX⊤)− µµ⊤

=

























Var(X1) Cov(X1, X2) . . . Cov(X1, Xn)

Cov(X2, X1) Var(X2) . . . Cov(X2, Xn)

. . . . . . . . . . . .

Cov(Xn, X1) Cov(Xn, X2) . . . Var(Xn)

























.

Properties of covariance matrix.

• If a is an n-dimensional (column) vector of real numbers, thenVar(a⊤X) =

a⊤ΣXa.

• The covariance matrix ΣX is positive-semidefinite and symmetric.

Proof. Just observe that Cov(Xi, Xj) = Cov(Xj , Xi) and for any a ∈ Rn,

a⊤ΣXa = Var(a⊤X) ≥ 0.

• ΣX+a = ΣX.

• ΣAX = AΣXA⊤, here A is an m× n matrix of real numbers.
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• If rank(ΣX) < n, then there exists vector of real numbers a 6= 0 such that

with probability one a⊤X = a⊤µ, that is, with probability 1 the values of

X belong to a hyperplane.

Proof. rank (ΣX) < n

⇔ det(ΣX) = 0

⇔ ∃a ∈ Rn, a 6= 0 such that ΣXa = 0

⇔ ∃a ∈ Rn, a 6= 0 such that a⊤ΣXa = 0

⇔ ∃a ∈ Rn, a 6= 0 such that Var(a⊤X) = 0

⇔ ∃a ∈ Rn, a 6= 0 such that P(a⊤X = a⊤µ) = 1

Definition 5.12 Let X,Y be random variables with 0 < Var(X) < ∞ and

0 < Var(Y ) <∞. The correlation coefficient of X and Y is

ρ(X,Y ) =
Cov(X,Y )

√

Var(X)Var(Y )
.

Properties of correlation coefficient.

• |ρ(X,Y )| ≤ 1

Proof. By Cauchy-Shwarz’s inequality (5.2) we have

[E(X −EX)(Y −EY )]2 ≤ E(X −EX)2E(Y −EY )2.

• |ρ(X,Y )| = 1 ⇔ ∃a, b ∈ R such that P(X = aY + b) = 1
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Proof. (⇒) Consider the following two-dimensional random vector ξ =

(X,Y )⊤. Since |ρ(X,Y )| = 1, we get that det(Σξ) = 0, that is, rank(Σξ) <

2. Therefore, ∃c 6= 0, d 6= 0 ∈ R (why are both not equal to zero?) such

that P(cX + dY = cEX + dEY ) = 1, and P(X = −(d/c)Y + (cEX +

dEY )/c) = 1.

Exercise 5.13 Let X,Y be random variables with 0 < Var(X) < ∞ and

0 < Var(Y ) <∞, and P(X = aY + b) = 1. Show that ρ(X,Y ) = sign(a).
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Chapter 6

Characteristic Functions

6.1 Definition and Basic Properties

Definition 6.1 The characteristic function (CF) of a random variable X with

distribution function FX is the complex valued function of t ∈ R given by

φX(t) = EeitX

= E cos(tX) + iE sin(tX)

=

∫

R

cos(tx)FX (dx) + i

∫

R

sin(tx)FX(dx).

First, note that φX(t) always exists because |eitX | = 1. Second, when we

deal with discrete and absolutely continuous distributions we use more practical

formulas:
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• (discrete)

φX(t) =
∑

all xk

eitxkpk

• (absolutely continuous)

φX(t) =

∫

R

eitxf(x)dx

Example 6.1 (Standard Normal) Let X be a random variable with the stan-

dard normal distribution. Recall that the pdf of the standard normal distribu-

tion is given by

f(x) =
1√
2π
e−x2/2.

First let us show that for n = 0, 1, . . .

EX2n =

∫ ∞

−∞
x2nf(x)dx = (2n− 1)!!.

Indeed, note that via integration by parts one has

EX2n =
1√
2π

∫ ∞

−∞
x2ne−x2/2dx

=
1√
2π

∫ ∞

−∞
x2n−1d(−e−x2/2)

= − 1√
2π
x2n−1e−x2/2

∣

∣

∣

+∞

−∞
+ (2n− 1)

1√
2π

∫ ∞

−∞
x2n−2e−x2/2dx.
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Thus, EX2n = (2n− 1)EX2n−2 and EX0 = 1. Therefore,

EX2n = (2n− 1)× · · · × 1 = (2n− 1)!!.

Now, since EX2n+1 = 0 we get

φX(t) =
1√
2π

∫ ∞

−∞
eixte−x2/2dx

=

∞
∑

k=0

(it)k

k!

∫ ∞

−∞
xk

1√
2π
e−x2/2dx

=

∞
∑

n=0

(it)2n

(2n)!
(2n− 1)!! =

∞
∑

n=0

(it)2n

(2n)!!

=

∞
∑

n=0

(−1)n
(

t2

2

)n
1

n!

= e−t2/2.

Let us do it in a different way. Observe that again by integration by parts

φ′X(t) =
i√
2π

∫ ∞

−∞
xeixte−x2/2dx

=
i√
2π

∫ ∞

−∞
eixtd(−e−x2/2)

= −t 1√
2π

∫ ∞

−∞
eixte−x2/2dx.

That is, the characteristic function of the standard normal distribution satisfies

the following differential equation:

φ′X(t) = −tφX(t), with φX(0) = 1.
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Solving the equation we get

φX(t) = e−t2/2.

Exercise 6.1 Find the characteristic functions of uniform, Poisson, and bino-

mial distributions.

Properties of characteristic functions.

• φ(0) = 1

• |φ(t)| ≤ 1

• φ(−t) = φ(t).1 If φ(·) is a real function, then it is an even function.

• If X is symmetric (that is, X and −X have the same distribution), then

φX is an even real function.

• The characteristic function φ(t) is uniformly continuous on R.

Proof. For any t, h ∈ R we have

|φ(t + h)− φ(t)| = |EeitX(eihX − 1)|

≤ E|eitX(eihX − 1)|

= E|(eihX − 1)|.

Since |eihX − 1| → 0 with probability 1 as h → 0, |eihX − 1| < 2, and

1Recall the complex conjugate a+ ib = a− ib.
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|eihX − 1| does not depend on t, by the dominated convergence theorem

|φ(t + h)− φ(t)| → 0 as h→ 0 uniformly for all t ∈ R.

• φaX+b = eitbφX(at). For instance, immediately we get that if X is a

normal random variable with mean µ and standard deviation σ, then

φX(t) = eitµ−σ2t2/2. (6.1)

• Let X and Y be independent random variables. Then

φX+Y (t) = φX(t)φY (t).

Proof. Because of independence

φX+Y (t) = Eeit(X+Y ) = EeitXeitY = EeitXEeitY = φX(t)φY (t).

The last property provides us with the main motivation for the introduction

of characteristic functions. Random variables are measurable functions on a

sample space. Adding two or more random variables or taking linear combina-

tions are the most basic operations that we can apply to a collection of random

variables. So it is not surprising that sums of random variables play an im-

portant role in applications (think about the sample mean or sample variance).

But the distribution of sum of two independent random variables is given by the
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convolution of the distributions. Convolution is a relatively complex operation.

The switch to characteristic functions allows us to substitute the operation of

convolution of distributions by product of characteristic functions.

Lemma 6.1 Let X and Y be independent random variable with distribution

functions FX and FY . Then the distribution function of X+Y is the convolution

of FX and FY :

FX+Y (z) =

∫

R

FX(z − y)FY (dy).

Proof. By Theorem 5.8 (change of variables in a Lebesgue integral) and Fubini’s

theorem we have

FX+Y (z) = P(X + Y ≤ z)

= E1X+Y≤z

=

∫

R2

1X+Y≤zFX,Y (dxdy)

=

∫

R

[∫ z−y

−∞
FX(dx)

]

FY (dy)

=

∫

R

FX(z − y)FY (dy).

Exercise 6.2 Let φ be a characteristic function, and c > 0. Show that ec(φ(t)−1)

is a CF as well. Hint: Let {Xk}k≥1 be iid random variables, and N be an

independent of {Xk}k≥1 random variable with a Poisson distribution. Consider

random variable
∑N

k=1Xk.
2

2This random variable has so-called compound Poisson distribution.
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Theorem 6.1 (Bochner’s Theorem) An arbitrary complex valued function

on R φ(·) is the characteristic function of some random variable if and only if

φ(·) is positive definite3, continuous, and φ(0) = 1.

Exercise 6.3 Prove that any characteristic function is positive definite. Note

that the “if” part of the theorem is more difficult.

The following sufficient condition is a bit more easy to check.

Theorem 6.2 (Pólya’s Theorem) If φ(·) is a real-valued, even, continuous

function which satisfies the conditions

1) φ(0) = 1,

2) φ(·) is convex on R+,

3) φ(∞) = 0,

then φ(·) is the characteristic function of an absolutely continuous symmetric

distribution.

Exercise 6.4 Check that e−|t| is a characteristic function.

Exercise 6.5 Let X1, . . . , Xn be independent identically distributed random

variables with the following characteristic function:

φ(t) = exp(−|t|α),

where 0 < α ≤ 1.

a) Using Polya’s theorem verify that φ(·) is a characteristic function.

3A function φ : R → C is positive definite if any t1, . . . , tn ∈ R and z1, . . . , zn ∈ C∑
i,j φ(ti − tj)zizj ≥ 0
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b) Show that

1

n1/α

n
∑

k=1

Xk

has the same characteristic function as X1.

Definition 6.2 We say that a discrete random variable has lattice distribution

if every possible value of the random variable can be represented in the form

a+ kh, where k = 0,±1,±2, . . .

Theorem 6.3 (Characteristic Functions of Lattice Distributions) A ran-

dom variable X with characteristic function φ(·) has a lattice distribution if and

only if there exists a real number t0 6= 0 such that |φ(t0)| = 1.

Proof. (⇒) Take t0 = 2π/h. Then if pk = P(X = a+ kh) we have

|φ(t0)| = |
∑

k

ei(a+hk)t0pk| = |eit0a
∑

k

eit0khpk|

= |eit0a||
∑

k

ei2πkpk| = |
∑

k

pk| = 1.

(⇐) If for some t0 6= 0 we have |φ(t0)| = 1, then there exists a real number α

such that φ(t0) = eiα. Therefore, Eei(t0X−α) = 1. That is, E cos(t0X − α) = 1

or

0 = E[cos(t0X − α)− 1] = −2E sin2
t0X − α

2
.

This means that with probability one | sin[(t0X − α)/2]| = 0, that is, the dis-

crete distribution measure of X is concentrated on the set of zeros of function

sin[(t0x− α)/2].
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6.2 Inversion Formula and Uniqueness

Theorem 6.4 (Inversion Formula) Let φ(·) be the characteristic function of

distribution function F (·). Consider two points a and b (a < b) at which F is

continuous. Then

F (b)− F (a) =
1

2π
lim

A→∞

∫ A

−A

e−itb − e−ita

−it φ(t)dt.

First let us state few lemmas.

Lemma 6.2

lim
A→∞

∫ A

−A

sin(αx)

x
dx = πsign(α).

Proof. Exercise. Prove that

lim
A→∞

∫ A

0

sin(x)

x
dx = π/2

using the fact that
∫∞
0
e−xtdt = 1/x and Fubini’s theorem, but with some

caution.

Lemma 6.3 Let

I(A,B, α) =

∫ B

A

sin(αx)

x
dx.

Then uniformly for all A, B, and α

|I(A,B, α)| < C.
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Proof. First note that

|I(A,B, α)| ≤
∣

∣

∣

∣

∣

∫ A

0

sin(αx)

x
dx

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ B

0

sin(αx)

x
dx

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ Aα

0

sin(x)

x
dx

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ Bα

0

sin(x)

x
dx

∣

∣

∣

∣

∣

≤ 2 sup
z≥0

∣

∣

∣

∣

∫ z

0

sin(x)

x
dx

∣

∣

∣

∣

Since

g(z) =

∫ z

0

sin(x)

x
dx

is a continuous function of z, and limz→∞ g(z) = π/2, we can take T large

enough to guarantee that

sup
z>T

|g(z)| < π/2 + 1.

Because of continuity of g we also have

sup
0≤z≤T

|g(z)| < C.

Therefore,

|I(A,B, α)| ≤ 2 sup
z≥0

|g(z)| < C1,

where C1 does not depend on A, B, and α.
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Lemma 6.4 For a < b consider

χ(x) =
1

2π
lim

A→∞

∫ A

−A

e−itb − e−ita

−it eitxdt.

Then

χ(x) =































0 x < a or x > b,

1/2 x = a or x = b,

1 a < x < b.

Proof. Indeed, by Lemma 6.2 we have

χ(x) =
1

2π
lim

A→∞

∫ A

−A

e−itb − e−ita

−it eitxdt

=
1

2π
lim

A→∞

∫ A

−A

eit(x−b) − eit(x−a)

−it dt

=
1

2π
lim

A→∞

∫ A

−A

cos(t(x− b))− cos(t(x − a))

−it dt

+
1

2π
lim

A→∞

∫ A

−A

sin(t(x − b))− sin(t(x − a))

−t dt

=
1

2π
lim

A→∞

∫ A

−A

sin(t(x− a))− sin(t(x− b))

t
dt

=
1

2
(sign(x− a)− sign(x − b)).

Theorem Proof. Since a, b are continuity points of F we get

F (b)− F (a) =

∫

R

χ(x)F (dx)

=
1

2π

∫

R

lim
A→∞

∫ A

−A

e−itb − e−ita

−it eitxdtF (dx)
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=
1

2π
lim

A→∞

∫

R

∫ A

−A

e−itb − e−ita

−it eitxdtF (dx)

=
1

2π
lim

A→∞

∫ A

−A

(∫

R

eitxF (dx)

)

e−itb − e−ita

−it dt

=
1

2π
lim

A→∞

∫ A

−A

φ(t)
e−itb − e−ita

−it dt.

We have two key steps here. First, because of Lemma 6.3 and the dominated

convergence theorem we can change order of
∫

R
and limA→∞. Then, by Fubini’s

theorem we can change order of integration
∫

R
and

∫ A

−A.

Theorem 6.5 (Uniqueness Theorem) Let F and G be distributions func-

tions with the same characteristic function. Then F (x) = G(x) for all x.

Proof. Exercise. Hint: if distribution function F is not continuous at a, then

we can find sequence an ↓ a such that F is continuous at every an.

Exercise 6.6 Let f : R → R be a non-decreasing function.

a) Show that f has limits from the right and from the left.

b) The point x ∈ R is called the discontinuity point (of the first kind) of f if

limits at x from the right and from the left do not coincide. Prove that f can

have no more than countably many points of discontinuity.

Exercise 6.7 Let Xi, i = 1, 2 be independent normal random variables with

mean µi and variance σ2
i , then X1 + X2 has normal distribution with mean

µ1 + µ2 and variance σ2
1 + σ2

2 .

Exercise 6.8 Let Xi, i = 1, 2 be independent Poisson random variables with

mean λi, then X1 +X2 has has Poisson distribution with mean λ1 + λ2.
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Exercise 6.9 Let φ1, φ2, and φ3 be characteristic functions, and φ1(t)φ2(t) =

φ1(t)φ3(t) for all t ∈ R. Does it follow that φ2(t) = φ3(t) for all t ∈ R? Prove

it or construct a counterexample.

Exercise 6.10 Let X1, X2, and X3 be independent random variables such that

X1 +X2 and X1 +X3 have the same distribution. Does it follow that X2 and

X3 have the same distribution?

Proposition 6.1 (Inversion Formula for Z-valued RVs) Suppose random

variable X takes values from Z = {0,±1,±2, . . .}, and pk = P(X = k). If φ(·)

is a characteristic function of X, then

pk =
1

2π

∫ π

−π

e−itkφ(t)dt.

Proof. Since

φ(t) =

∞
∑

j=−∞
eitjpj

we get

∫ π

−π

e−itkφ(t)dt =

∫ π

−π

∞
∑

j=−∞
e−it(j−k)pjdt =

∞
∑

j=−∞

(∫ π

−π

e−it(j−k)dt

)

pj = 2πpk,

because the integral in the brackets is 0 for k 6= j.

Proposition 6.2 (Inversion Formula for Integrable CFs) Let F be a dis-

tribution function, and φ is its characteristic function. If

∫

R

|φ(t)|dt <∞,
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then F is absolutely continuous, and its density is given by

f(x) =
1

2π

∫

R

e−itxφ(t)dt. (6.2)

Proof. Let us take function given by formula (6.2). First note that it is a

continuous function, because

|f(x+ h)− f(x)| ≤ 1

2π

∫

R

|e−ith − 1||φ(t)|dt → 0, as h→ 0,

by dominated convergence theorem. Therefore, it is integrable on [a, b]. Now

by Fubini’s theorem and the inversion formula we find

∫ b

a

f(x)dx =

∫ b

a

1

2π

(∫

R

e−itxφ(t)dt

)

dx

=
1

2π

∫

R

φ(t)

(

∫ b

a

e−itxdx

)

dt

= lim
A→∞

1

2π

∫ A

−A

φ(t)

(

∫ b

a

e−itxdx

)

dt

=
1

2π
lim

A→∞

∫ A

−A

e−itb − e−ita

−it φ(t)dt

= F (b)− F (a)

for all continuity points a and b. That is,

F (x) =

∫ x

−∞
f(x)dx

for all x ∈ R. Since one can show that f(x) ≥ 0 for all x, it finishes the proof.
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Exercise 6.11 Show that f(x) ≥ 0 for all x. Hint: we already proved that it

is continuous.

6.3 Characteristic Functions and Moments

Let X be a random variable. The k-th absolute moment, E|X |k, is denoted by

βk. If βk <∞ then the k-th moment, EXk, is denoted by αk. Let us start with

the following lemma.

Lemma 6.5 For any k = 0, 1, . . . and x ∈ R we have

∣

∣

∣

∣

∣

∣

eix −
k
∑

j=0

(ix)j

j!

∣

∣

∣

∣

∣

∣

≤ |x|k+1

(k + 1)!
.

Proof. We will prove it by induction. When k = 0 we obviously have

|eix − 1| =
∣

∣

∣

∣

∫ x

0

eitdt

∣

∣

∣

∣

≤
∫ |x|

0

∣

∣eit
∣

∣ dt = |x|.

Now if we introduce

Rk(x) = eix −
k
∑

j=0

(ix)j

j!
,

then one can show that

Rk+1(x) = i

∫ x

0

Rk(t)dt.
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Therefore, for x > 0 we have

|Rk+1(x)| ≤
∫ x

0

|Rk(t)|dt ≤
∫ x

0

tk+1

(k + 1)!
dt =

xk+2

(k + 2)!
.

Theorem 6.6 Let φ(·) be the characteristic function of random variable X with

the cdf F (·) and suppose that for some k > 0 the absolute moment βk is finite.

Then

1. the k-th derivative φ(k)(t) exists and for r ≤ k

φ(r)(t) =

∫ ∞

−∞
(ix)reitxF (dx),

2. φ(r)(0) = irαr,

3. when t→ 0

φ(t) =

k
∑

j=0

(it)j

j!
αj + o(|t|k).

Proof. In fact, we only need to prove 1. Again we will do it by induction. When

r = 0 the statement is obvious. Assume that the formula is true for r < k. First

note that

φ(r)(t+ h)− φ(r)(t)

h
=

∫ ∞

−∞
(ix)r

ei(t+h)x − eitx

h
F (dx)

=

∫ ∞

−∞
(ix)reitx

eihx − 1

h
F (dx)
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By Lemma 6.5 (the easy case when k = 0) we have |eihx − 1| ≤ |hx|, and, as a

consequence,
∣

∣

∣

∣

(ix)reitx
eihx − 1

h

∣

∣

∣

∣

≤ |x|r+1.

Since
∫

R

|x|r+1F (dx) <∞

the dominated convergence theorem tells us that

lim
h→0

φ(r)(t+ h)− φ(r)(t)

h
=

∫ ∞

−∞
(ix)r lim

h→0

ei(t+h)x − eitx

h
F (dx)

=

∫ ∞

−∞
(ix)r+1eitxF (dx)

The second formula immediately follows from the first one, and Taylor’s theorem

gives 3.

But we also can prove the last statement directly. Indeed, note that for any

real tX

eitX = cos(tX) + i sin(tX) =

k−1
∑

j=0

(itX)j

j!
+

(itX)k

k!
[cos(θ1tX) + i sin(θ2tX)],

where |θ1| < 1 and |θ2| < 1. Taking expectation we get

φ(t) =

k
∑

j=0

(it)j

j!
EXj +

(it)k

k!
EXk[cos(θ1tX) + i sin(θ2tX)− 1].
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Since by the dominated convergence theorem

EXk[cos(θ1tX) + i sin(θ2tX)− 1] → 0, as t→ 0,

this finishes the proof.

Theorem 6.7 Let φ(·) be the characteristic function of random variable X with

the cdf F (·). Suppose that for some k > 0 derivative φ(2k)(0) exists and finite.

Then β2k <∞.

First, let us start with case k = 1. By Fatou’s lemma and l’Hôpital’s rule we

obtain

φ′′(0) = lim
h→0

1

2

[

φ′(2h)− φ′(0)

2h
+
φ′(0)− φ′(−2h)

2h

]

= lim
h→0

[

φ′(2h)− φ′(−2h)

4h

]

= lim
h→0

1

4h2
[φ(2h)− 2φ(0) + φ(−2h)]

= lim
h→0

∫

R

[

eihx − e−ihx

2h

]2

F (dx)

= − lim
h→0

∫

R

[

sinhx

hx

]2

x2F (dx)

≤ −
∫

R

lim
h→0

[

sinhx

hx

]2

x2F (dx)

= −
∫

R

x2F (dx)

That is, we have
∫

R
x2F (dx) ≤ −φ′′(0) <∞.

Now, let us prove the general statement by induction. Assume that φ(2k+2)(0)

exists and finite, and β2k =
∫

R
x2kF (dx) < ∞. Note that if β2k = 0, then
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β2k+2 = 0 as well, and we have nothing to prove. So assume that β2k > 0. If

we introduce the following (cumulative distribution) function

G(x) =
1

β2k

∫ x

−∞
y2kF (dy),

then using the Theorem 6.6 we get

∫

R

eitxG(dx) =
1

β2k

∫

R

eitxx2kF (dx)

=
i2k

β2k

∫

R

eitx(ix)2kF (dx)

= (−1)kφ(2k)(t)/β2k

That is, (−1)kφ(2k)(t)/β2k is the characteristic function of G(·) and its second

derivative exists and finite. Therefore, employing case k = 1 we get that

∫

R

x2G(dx) <∞

Since β2k+2/β2k =
∫

R
x2G(dx), we are done.

Exercise 6.12 Show that e−t4 is not a characteristic function.

Exercise 6.13 Show that if a characteristic function has a finite second deriva-

tive at 0 then it is differentiable everywhere.
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6.4 Characteristic Function of Random Vectors

Definition 6.3 Let X = (X1, . . . , Xn)
⊤ be a random vector (column) with dis-

tribution measure PX . Then the characteristic function of X is the complex

valued function of t = (t1, . . . , tn)
⊤ ∈ Rn given by

φX(t) = EeiX
⊤t

=

∫

Rn

eix
⊤tPX(dx).

Properties of characteristic functions.

• φ(0) = 1

• |φ(t)| ≤ 1

• The characteristic function φ(t) is uniformly continuous on Rn.

• φAX+b(t) = eib
⊤tφX(A⊤t).

Definition 6.4 Consider n-dimensional rectangle

I = [a1, b1]× [a2, b2]× · · · × [an, bn].

We say that it is a rectangle of continuity with respect to measure P (on Rn) if

P(∂I) = 0.

Theorem 6.8 (Inversion Formula for Random Vectors) Let φ(·) be the
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characteristic function of probability distribution measure P. Consider rectangle

of continuity I = [a1, b1]× [a2, b2]× · · · × [an, bn]. Then

P(I) =
1

(2π)n
lim

A→∞

∫ A

−A

· · ·
∫ A

−A

n
∏

k=1

e−itkbk − e−itkak

−itk
φ(t)dt.

Proof. Consider function (see Lemma 6.4)

χa,b(x) =
1

2π
lim

A→∞

∫ A

−A

e−itb − e−ita

−it eitxdt.

Then by the dominated convergence theorem and Fubini’s theorem we obtain

P(I) =

∫

Rn

n
∏

k=1

χak,bk(xk)P(dx)

=
1

(2π)n

∫

Rn

lim
A→∞

n
∏

k=1

∫ A

−A

e−itkbk − e−itkak

−itk
eitkxkdtkP(dx)

=
1

(2π)n
lim

A→∞

∫

Rn

∫ A

−A

· · ·
∫ A

−A

n
∏

k=1

e−itkbk − e−itkak

−itk
eitkxkdtP(dx)

=
1

(2π)n
lim

A→∞

∫ A

−A

· · ·
∫ A

−A

n
∏

k=1

e−itkbk − e−itkak

−itk

∫

Rn

eix
⊤tP(dx)dt

=
1

(2π)n
lim

A→∞

∫ A

−A

· · ·
∫ A

−A

n
∏

k=1

e−itkbk − e−itkak

−itk
φ(t)dt.

Theorem 6.9 Let X and Y be random vectors with the same characteristic

function. Then the corresponding distributions are the same.

Proof. Exercise.

Proposition 6.3 (Inversion Formula for Integrable CFs) Let X be a ran-
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dom vector, and φ is its characteristic function. If

∫

Rn

|φ(t)|dt <∞,

then the distribution of X is absolutely continuous, and its density is given by

f(x) =
1

(2π)n

∫

Rn

e−ix⊤tφ(t)dt. (6.3)

Proof. Exercise.

Theorem 6.10 Let X = (X1, . . . , Xn)
⊤ be a random vector. The random vari-

ables X1, ..., Xn are independent if and only if for all t = (t1, . . . , tn)
⊤ ∈ Rn

φX(t) =
n
∏

k=1

φXk
(tk).

Proof.

(⇒) Just note that because of independence

φX(t) = EeiX
⊤t = E

n
∏

k=1

eiXktk =
n
∏

k=1

EeiXktk =
n
∏

k=1

φXk
(tk).

(⇐) Random variables X1, X2,..., Xn are independent if for any Borel sets

B1, B2,..., Bn we have that

P(X1 ∈ B1, X2 ∈ B2, . . . , Xn ∈ Bn) = P(X1 ∈ B1)P(X2 ∈ B2) · · ·P(Xn ∈ Bn),
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or

PX(B1 ×B2 × · · · ×Bn) = PX1
(B1)PX2

(B2) · · ·PXn
(Bn).

Let Q = PX1
⊗ PX2

⊗ · · · ⊗ PXn
(a probability measure on (Rn,B(Rn)).

Thus, we need to show that PX = Q. Let

π1 = {∅, all closed rectangles in Rn},

π2 = {∅, all closed rectangles in continuity Rn},

and

π3 = {∅, all closed rectangles in Rn with P(Xk = ak) = P(Xk = bk) = 0}.

Collections π1, π2 and π3 are π-systems, and π3 ⊂ π2 ⊂ π1. Moreover, B(Rn) =

σ(π1) = σ(π2) = σ(π3), because any closed rectangle can be approximated by

rectangles from π3. Therefore, by the set induction, it will be sufficient to check

that for all rectangles from π3,

I = [a1, b1]× [a2, b2]× · · · × [an, bn],

we have

PX(I) =

n
∏

k=1

PXk
([ak, bk]).

This is easy to verify with help of the inversion formulas for random variables
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and vectors:

PX(I) =
1

(2π)n
lim

A→∞

∫ A

−A

· · ·
∫ A

−A

n
∏

k=1

e−itkbk − e−itkak

−itk
φ(t)dt

=
1

(2π)n
lim

A→∞

∫ A

−A

· · ·
∫ A

−A

n
∏

k=1

e−itkbk − e−itkak

−itk
φXk

(tk)dt

=
1

(2π)n

n
∏

k=1

lim
A→∞

∫ A

−A

e−itkbk − e−itkak

−itk
φXk

(tk)dtk

=

n
∏

k=1

PXk
([ak, bk]).

6.5 Multivariate Normal Distribution

Definition 6.5 We say that random vector X has multivariate normal distri-

bution if for any t = (t1, . . . , tn)
⊤ ∈ Rn random variable X⊤t has a univariate

normal distribution or a degenerate distribution.

Exercise 6.14 Show that if random variable X is normal then (X,X)⊤ is a

normal vector.

Exercise 6.15 Show that if X and Y are independent normal random variables

then (X,Y )⊤ is a normal vector.

Lemma 6.6 If X has normal distribution and A is n× n matrix then random

variable AX is normal.

Proof. Exercise.
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Theorem 6.11 (CFs of Normal Random Vector) The following two state-

ments hold.

1. Let X be a normal random vector with mean µ and covariance matrix Σ,

then

φ(t) = eiµ
⊤t−t⊤Σt/2. (6.4)

2. For any vector µ and positive-semidefinite symmetric matrix Σ there exists

normal vector X with the characteristic function (6.4).

Proof.

1. Let us consider random variable X⊤t. It has normal distribution with

mean µ⊤t and variance t⊤Σt. By formula (6.1) we get

φ(t) = EeiX
⊤t·s

∣

∣

∣

s=1

= φX⊤t(1)

= exp
[

iµ⊤ts− t⊤Σts2/2
]

∣

∣

∣

s=1

= eiµ
⊤t−t⊤Σt/2.

2. Without loss of generality we assume that µ = 0.

Case 1. If Σ is diagonal, that is, Σ = diag(σ2
1 , . . . , σ

2
n). Then formula (6.4)

gives us

φ(t) = exp

[

−
n
∑

k=1

σ2
kt

2
k/2

]

=

n
∏

k=1

exp
[

−σ2
kt

2
k/2
]

.

Now, if Xk, k = 1, . . . , n are independent normal random variable with mean

0 and variance σ2
k, then random vector X = (X1, . . . , Xn)

⊤ has multivariate
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normal distribution. Moreover, by Theorem 6.10 its characteristic function is

given by (6.4).

Case 2. If Σ is not diagonal (but positive-semidefinite and symmetric) then

there exists an orthogonal4 matrix U such that UΣU⊤ is diagonal. Let Y be

the normal random vector that corresponds to matrix UΣU⊤. Let X = U⊤Y.

By Lemma 6.6 X is a normal vector, and its characteristic function is given by

φX(t) = EeiX
⊤t = EeiY

⊤(Ut) = φY(Ut) = e−t⊤U⊤UΣU⊤Ut/2 = e−t⊤Σt/2.

Theorem 6.12 Let X = (X1, . . . , Xn)
⊤ be normal random vector with covari-

ance matrix Σ. Then the following three statements are equivalent.

1. Random variables X1, . . . , Xn are independent.

2. Random variables X1, . . . , Xn are uncorrelated.

3. Matrix Σ is diagonal.

Proof.

(1. ⇒ 2.) is obvious.

(2. ⇒ 3.) is obvious.

(3. ⇒ 1.) Let Σ = diag(σ2
1 , . . . , σ

2
n). Since

φ(t) = eiµ
⊤t−t⊤Σt/2 = eiµ

⊤t−∑n
k=1

σ2
kt

2
k/2 =

n
∏

k=1

eiµktk−σ2
kt

2
k/2.

4that is, U−1 = U⊤
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by Theorem 6.10 we get 1.

Theorem 6.13 Let X = (X1, . . . , Xn)
⊤ be a normal random vector with mean

µ and covariance matrix Σ. Assume that det(Σ) 6= 0 then the density of X is

given by

f(x) =
1

(2π)n/2 det(Σ)1/2
e−(x−µ)⊤Σ−1(x−µ)/2. (6.5)

Proof. Without loss of generality assume that means are zeros.

Case 1. If Σ is diagonal, that is, Σ = diag(σ2
1 , . . . , σ

2
n), and σ2

k > 0, then

X1, . . . , Xn are independent with means 0 and variances σ2
k. As a result,

f(x) =

n
∏

k=1

1√
2πσk

e−x2
k/2σ

2
k =

1

(2π)n/2 det(Σ)1/2
e−(x−µ)⊤Σ−1(x−µ)/2.

Case 2. If Σ is not diagonal (but positive-semidefinite, symmetric and in-

vertable) then there exists an orthogonal matrixU such thatUΣU⊤ is diagonal.

Let Y be the normal random vector that corresponds to matrix UΣU⊤. Let

X = U⊤Y, then X is a normal vector with mean 0 and covariance matrix Σ.

Now, for a Borel set A ∈ Rn with help of substitution x = U⊤y,y = Ux we

obtain

P(X ∈ A) = P(Y ∈ UA)

=

∫

UA

fY(y)dy

=
1

(2π)n/2 det(UΣU⊤)1/2

∫

UA

e−y⊤(UΣU⊤)−1y/2dy

=
1

(2π)n/2 det(Σ)1/2

∫

A

e−x⊤U⊤(UΣU⊤)−1Ux/2| det(U)|dx
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=
1

(2π)n/2 det(Σ)1/2

∫

A

e−x⊤U⊤UΣ−1U⊤Ux/2dx

=
1

(2π)n/2 det(Σ)1/2

∫

A

e−x⊤Σ−1x/2dx.

Note that the absolute value of Jacobian determinant ofU is 1, and det(UΣU⊤) =

det(Σ).

Exercise 6.16 Show that for any vector µ and positive-semidefinite symmetric

matrix Σ with det(Σ) 6= 0 there exists normal vector X with pdf given by (6.5).

Exercise 6.17 Let (X1, X2)
⊤ be two-dimensional normal vector with mean

(µ1, µ2)
⊤ and covariance matrix









σ2
1 ρσ1σ2

ρσ1σ2 σ2
2









.

Find the joint pdf.

Exercise 6.18 Let X be a normal random variable with mean 0 and variance

1, and ξ be a Bernoulli random variable with P(ξ = 1) = P(ξ = 0) = 1/2.

Assume that X and ξ are independent. Let us define random variable Y by the

following rule:

Y =















−X, if ξ = 1,

X, if ξ = 0.

a) Find characteristic function of Y to prove that it has the standard normal

distribution.
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b) Calculate Cov(X,Y ).

c) Find a linear combination aX + bY that is not normally distributed to prove

that (X,Y )⊤ is not a normal vector.

d) Find a Borel set B such that P(X ∈ B ∩ Y ∈ B) 6= P(X ∈ B)P(Y ∈ B) to

prove that X and Y are not independent.
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Chapter 7

Convergence

7.1 Different Types of Convergence

Let {X,Xn}n≥1 be a sequence of random variables on (Ω,F ,P).

Definition 7.1 We say that {Xn} converges to random variable X almost

surely (a.s. or with probability 1), written Xn
a.s.−→ X, if

P[ω : Xn(ω) → X(ω)] = 1.

Definition 7.2 We say that {Xn} converges to random variable X in proba-

bility, written Xn
P−→ X, if for any ǫ > 0

P[|Xn −X | > ǫ] → 0.

123



Definition 7.3 We say that {Xn} converges to random variable X in Lp, p > 0,

written Xn
Lp−→ X, if

E|Xn −X |p → 0.

Definition 7.4 We say that {Xn} with cdf Fn converges to random variable X

with cdf F in distribution, written Xn
d−→ X, if at any continuity point x of cdf

F

Fn(x) → F (x).

Theorem 7.1 (An Iff Condition for a.s. Convergence) Let {Xn}n≥1 be a

sequence of random variables. Then

Xn
a.s.−→ X

iff

P

[

sup
k≥n

|Xk −X | ≥ ǫ

]

→ 0, as n→ ∞,

for every ǫ > 0.

Proof. Note that

Xn
a.s.−→ X

⇔ P({|Xn −X | > ǫ} i.o.) = 0 for any ǫ > 0

⇔ P(
⋂

n≥1

⋃

k≥n {|Xk −X | > ǫ}) = 0 for any ǫ > 0

⇔ limn P(
⋃

k≥n {|Xk −X | > ǫ}) = 0 for any ǫ > 0

⇔ limn P(supk≥n |Xk −X | > ǫ) = 0 for any ǫ > 0.
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Proposition 7.1 Let {Xn}n≥1 be a sequence of random variables. If

Xn
P−→ X,

then there exists subsequence nk such that

Xnk

a.s.−→ X.

Proof. Let n1 = 1, and for k ≥ 2 define

nk = inf{n : n > nk−1,P(|Xnk
−X | > 1/k) < 1/2k}.

It is possible, because P(|Xn −X | > ǫ) → 0 for any ǫ > 0. Since

∑

k

P(|Xnk
−X | > 1/k) <∞

by Borel-Cantelli Lemma we have that P({|Xnk
−X | > 1/k} i.o.) = 0, that is,

Xnk

a.s.−→ X .

Theorem 7.2 (Convergence Graph) The following implications are true.

Xn
a.s.−→ X ⇒ Xn

P−→ X, (7.1)

Xn
Lp−→ X ⇒ Xn

P−→ X, p > 0 (7.2)

Xn
P−→ X ⇒ Xn

d−→ X. (7.3)
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Proof. The statement (7.1) follows from Theorem 7.1. The Lp version of Cheby-

shev’s inequality gives us (7.2). So, we really need to work out only the last

implication. Let Fn denote the cdf of Xn, and let F denote the cdf of X .

Consider x which is a continuity point of F . Note that for any ǫ > 0

P(Xn ≤ x) = P(Xn ≤ x, |Xn −X | > ǫ) +P(Xn ≤ x, |Xn −X | ≤ ǫ)

≤ P(|Xn −X | > ǫ) +P(X ≤ x+ ǫ)

and

P(X ≤ x− ǫ) = P(X ≤ x− ǫ, |Xn −X | > ǫ) +P(X ≤ x− ǫ, |Xn −X | ≤ ǫ)

≤ P(|Xn −X | > ǫ) +P(Xn ≤ x)

That is, for any ǫ > 0 we have

F (x− ǫ)−P(|Xn −X | > ǫ) ≤ Fn(x) ≤ F (x+ ǫ) +P(|Xn −X | > ǫ).

Taking limit with respect to n gives us

F (x− ǫ) ≤ lim inf
n

Fn(x) ≤ lim sup
n

Fn(x) ≤ F (x+ ǫ).

Since x is a continuity point of F sending ǫ→ 0 finishes the proof.

Theorem 7.3 Let Fn denote the cdf of Xn, and let F denote the cdf of X. If

Xn
d−→ X and F is continuous, then Fn converges to F uniformly.
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Proof. Fix ǫ > 0. Since F is continuous we can find −∞ < x1 < · · · < xk < ∞

such that

F (x1) < ǫ/2, 1−F (xk) < ǫ/2, and F (xi+1)−F (xi) < ǫ/2 for i = 1, . . . , k−1.

For xi ≤ x ≤ xi+1 i = 1, . . . , k − 1 and for sufficiently large n we have

Fn(x) − F (x) ≤ Fn(xi+1)− F (xi) + F (xi+1)− F (xi+1)

= Fn(xi+1)− F (xi+1) + F (xi+1)− F (xi)

≤ ǫ,

and

Fn(x) − F (x) ≥ Fn(xi)− F (xi+1) + F (xi)− F (xi)

= Fn(xi)− F (xi) + F (xi)− F (xi+1)

≥ −ǫ.

That is, there exists Ni such that for all n > Ni

sup
xi≤x≤xi+1

|Fn(x) − F (x)| ≤ ǫ.

Similarly, if x < x1

Fn(x) − F (x) ≤ Fn(x1)− F (x1) + F (x1)
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≤ ǫ,

and

Fn(x) − F (x) ≥ −F (x1)

≥ −ǫ.

Thus, there exists N0 such that for all n > N0

sup
x≤x1

|Fn(x)− F (x)| ≤ ǫ.

The same can be done for x > xk. Therefore, for n > max{N0, N1, . . . , Nk}

we have

sup
x∈R

|Fn(x)− F (x)| ≤ ǫ.

Exercise 7.1 Give an example for each implication that shows that it is not

invertible.

Exercise 7.2 Show that

(a) if 0 ≤ Xn ≤ Yn and Yn
P−→ 0, then Xn

P−→ 0,

(b) if Xn
P−→ 0 and P(|Yn| > M) → 0 for some M > 0, then XnYn

P−→ 0,

(c) if Xn
P−→ X and Yn

P−→ Y , then Xn + Yn
P−→ X + Y ,

(d) if Xn
P−→ X and Yn

P−→ Y , then XnYn
P−→ XY .

Exercise 7.3 Show that if Xn
d−→ 0, then Xn

P−→ 0.
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7.2 Weak Convergence of Probability Measures

Definition 7.5 Let P,Pn be probability measures on (R,B(R)). The sequence

of probability measures {Pn} converges weakly to probability measure P, written

Pn =⇒ P, if

Pn(A) → P(A)

for every set A = (−∞, x] with P({x}) = 0.

For any probability measure on (R,B(R)) we can introduce the correspond-

ing cdf (by Fn(x) = Pn((−∞, x]) and F (x) = P((−∞, x])), so we will also use

notation Fn =⇒ F . Thus convergence in distribution and weak convergence

of probability measures are only different expression of the same fact. But the

new definition is a bit more flexible, and it can be easily extended to probability

measures on, say, metric spaces.

Exercise 7.4 Show that if Fn =⇒ F and Fn =⇒ G, then F = G.

Exercise 7.5 Show that if limn Fn(x) = F (x) for x in a set D dense in R, then

and Fn =⇒ F .

Lemma 7.1 (Quantile Function) Let F be a cdf. For 0 < ω < 1 define set

A(ω) = {x : ω ≤ F (x)},

and

X(ω) = inf A(ω).
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Then

(a) A(ω) is a closed on the left interval stretching to ∞,

(b) X(ω) is non-decreasing,

(c) ω ≤ F (x) if and only if X(ω) ≤ x or, equivalently, by taking negation of the

first statement we also have ω > F (x) if and only if X(ω) > x.

Proof.

(a) Assume that x ∈ A(ω) and x < x′, then ω ≤ F (x) ≤ F (x′), that is,

x′ ∈ A(ω). That is, A(ω) is an interval stretching to ∞ Now, let us show that

A(ω) is a closed interval. If xn → x, xn > x, and xn ∈ A(ω), then

ω ≤ F (xn) ↓ F (x),

therefore, ω ≤ F (x) and x ∈ A(ω). In particular, this means that X(ω) ∈ A(ω)

and ω ≤ F (X(ω)).

(b) Since for ω ≤ ω′ we have A(ω′) ⊂ A(ω) we get that X(ω) is non-

decreasing.

(c) If x < X(ω) = inf A(ω), then x /∈ A(ω), and ω > F (x). If inf A(ω) =

X(ω) ≤ x, then x ∈ A(ω), and, therefore, ω ≤ F (x).

Exercise 7.6 Consider strictly increasing continuous functions fn, f : [0, 1] 7→

[0, 1], with fn(0) = f(0) = 0 and fn(1) = f(1) = 1. Assume that fn(x) → f(x)

for every x ∈ [0, 1]. Show that inverse functions converge to the inverse of f ,

that is, f−1
n (y) → f−1(y) for every 0 ≤ y ≤ 1 .
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Theorem 7.4 (Skorohod’s Theorem) Let P,Pn be probability measures on

(R,B(R)) and Pn =⇒ P. Then there exist random variables Xn and X on a

common probability space (Ω,F ,Q) such that Xn has distribution Pn, X has

distribution P, and for every ω ∈ Ω Xn(ω) → X(ω).

Proof. Let us take Ω = (0, 1), F = B((0, 1)), and Q = λ, the Lebesgue measure.

Consider the distribution functions Fn and F corresponding Pn and P. For

every ω ∈ (0, 1) we define

Xn(ω) = inf{x : ω ≤ Fn(x)}

and

X(ω) = inf{x : ω ≤ F (x)}.

By Lemma 7.1, ω ≤ F (x) if and only if X(ω) ≤ x. Therefore,

Q[ω : X(ω) ≤ x] = Q[ω : ω ≤ F (x)] = λ[(0, F (x))] = F (x).

That is, F is the cdf of X . In the same fashion, we can show that Xn has

distribution Fn.

Let us take ω ∈ (0, 1). For any ǫ > 0 we can find x with P({x}) = 0 such

that

X(ω)− ǫ < x < X(ω).

Since x < X(ω) ⇔ F (x) < ω, and Fn(x) → F (x) we get that for all sufficiently
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large n Fn(x) < ω or x < Xn(ω). So, we have that

X(ω)− ǫ < x < Xn(ω).

Taking n→ ∞, because of an arbitrary choice of ǫ we obtain

X(ω) ≤ lim inf
n

Xn(ω).

Consider now ω′ such that ω < ω′. For any ǫ > 0 we can find x′ with

P({x′}) = 0 such that

X(ω′) < x′ < X(ω′) + ǫ.

Since X(ω′) ≤ x′ ⇔ ω′ ≤ F (x′), and Fn(x
′) → F (x′) we get that for all

sufficiently large n ω ≤ Fn(x
′) or Xn(ω) ≤ x′. Note that in this direction we

have the equivalency of non-strict inequalities; that is the reason why we need

the extra gap.

Thus we get that

Xn(ω) ≤ x′ < X(ω′) + ǫ,

and, therefore,

lim sup
n

Xn(ω) ≤ X(ω′).

Therefore, for any 0 < ω < ω′ < 1 we get that

X(ω) ≤ lim inf
n

Xn(ω) ≤ lim sup
n

Xn(ω) ≤ X(ω′).
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So, if ω is a continuity point of X , then Xn(ω) → X(ω). Since X is nondecreas-

ing, it has at most countable numbers of points of discontinuity (that is, the

Lebesgue measure of this set is 0). Let us redefine X and Xn at those points by

X(ω) = Xn(ω) = 0. This will not change the distributions of X and Xn, and

therefore, the construction is finished.

Exercise 7.7 Let F be a cdf given by

F (x) =































































0, x < 0

x/3, 0 ≤ x < 1

1/2 1 ≤ x < 1.5

x− 1 1.5 ≤ x < 2

1 x ≥ 2

Construct

Q(p) = inf{x : p ≤ F (x)},

where 0 < p < 1.

Theorem 7.5 (Mapping Theorem) Suppose h : R → R is measurable, and

the set Dh of its discontinuity is measurable as well. If Pn =⇒ P and P(Dh) =

0, then Pnh
−1 =⇒ Ph−1.1

Proof. Let us consider random variables Xn and X constructed in Theorem 7.4.

1Ph−1 is a probability measure on (R,B(R)) given by Ph−1(A) = P(h−1A).
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If X(ω) /∈ Dh, then for such ω we have h(Xn(ω)) → h(X(ω)). Since

Q[X(ω) ∈ Dh] = P[Dh] = 0,

we, in fact, have

h(Xn(ω))
a.s.−→ h(X(ω))

with respect to measure Q. By Theorem 7.2 we get that h(Xn)
d−→ h(X). But

Q[h(X) ∈ A] = Q[X ∈ h−1A] = P[h−1A], that is, h(X) has distribution Ph−1.

Similarly, h(Xn) has distribution Pnh
−1

Corollary 7.1 (in terms of random variables) If Xn
d−→ X and P[X ∈ Dh] =

0, then h(Xn)
d−→ h(X).

Proposition 7.2 If Xn
d−→ X and Xn are uniformly integrable, then X is

integrable and EXn → EX.

Proof. Exercise. Hint: use the Skorohod’s theorem and note that the uniform

integrability (see Definition 5.5) can be thought as a statement in terms of cdfs.

Theorem 7.6 (Portmanteau Theorem) The following four conditions are

equivalent.

1. Pn =⇒ P.

2.
∫

R
fdPn →

∫

R
fdP for all bounded, continuous real f on R.

3.
∫

R
fdPn →

∫

R
fdP for all bounded, uniformly continuous real f on R.
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4. Pn(A) → P(A) for every Borel set A with P(∂A) = 0.2

Proof.

(1. ⇒ 2.) Let us again consider random variables Xn and X constructed in

Theorem 7.4. Let f be a bounded, continuous function. Then f(Xn) → f(X)

Q-a.s. By change of variables theorem and the dominated convergence theorem

we have
∫

R

fdPn = EQ[f(Xn)] → EQ[f(X)] =

∫

R

fdP.

(2. ⇒ 3.) Obvious.

(1. ⇒ 4.) Let A be Borel set A with P(∂A) = 0. Consider function

f(x) = 1A(x). It is a bounded function, and the set Df of its discontinuities

is equal to ∂A. Since P(∂A) = 0 we get that f(Xn) → f(X) Q-a.s., therefore,

again by change of variables and the dominated convergence theorem we get

Pn(A) = EQ[f(Xn)] → EQ[f(X)] = P(A).

(4. ⇒ 1.) Obvious.

(3. ⇒ 1.) Consider the distribution functions Fn and F that correspond to

Pn and P. For any x < y let us introduce the following bounded, uniformly

2Here the boundary ∂A = closure(A) ∩ closure(Ac).
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continuous function:

f(t) =































1 t ≤ x

(y − t)/(y − x) x < t < y

0 t ≥ y

.

Since

Fn(x) =

∫

(−∞,x]

dPn ≤
∫

R

fdPn

and
∫

R

fdP ≤
∫

(−∞,y]

dP = F (y),

it follows from 3. that

lim sup
n

Fn(x) ≤ F (y),

and sending y ↓ x we get that (F is right-continuous)

lim sup
n

Fn(x) ≤ F (x).

In similar fashion for u < x we can get that

F (u) ≤ lim inf
n

Fn(x)

and, as a consequence

F (x−) ≤ lim inf
n

Fn(x).
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Thus, we have

F (x−) ≤ lim inf
n

Fn(x) ≤ lim sup
n

Fn(x) ≤ F (x),

which means convergence at continuity points of F .

Using these five implications we can go from any statement to another one,

so we are done!

Theorem 7.7 (Slutsky’s Theorem) Let Xn
d−→ X and Yn

d−→ 0, then Xn+

Yn
d−→ X.

Proof. Let f be a bounded, uniformly continuous function. By Portmanteau

theorem, it is enough to show that Ef(Xn + Yn) → Ef(X). For any δ > 0 we

get that

|Ef(Xn + Yn)−Ef(X)| ≤ |Ef(Xn + Yn)−Ef(Xn)|+ |Ef(Xn)−Ef(X)|

≤ E|f(Xn + Yn)− f(Xn)|1|Yn|≤δ

+E|f(Xn + Yn)− f(Xn)|1|Yn|>δ

+|Ef(Xn)−Ef(X)|

≤ sup
|x−y|≤δ

|f(x)− f(y)|

+2 sup
x

|f(x)|P(|Yn| > δ)

+|Ef(Xn)−Ef(X)|.

The first term is small for small δ > 0 because of the uniform continuity of f ,

the second one is small for large n because f is bounded and Yn
P−→ 0, the last
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one is small because Xn
d−→ X and Ef(Xn) → Ef(X).

7.3 Weak Convergence and Pointwise Conver-

gence of CFs

Theorem 7.8 (Helly’s selection Theorem) For every sequence of cdfs {FN}N≥1

there exists a subsequence of cdfs, {Fn}n≥1, and a nondecreasing, right-continuous

function F : R → [0, 1] such that Fn(x) → F (x) at continuity points of F .

Proof. Let Q = {q1, q2, q3, . . . } be the ordered set of all rational numbers.

Since {FN (q1)}N≥1 ⊆ [0, 1] there exists a sequence F1n(q1) such that F1n(q1)

converges to a number, let us call it Q(q1). Since {F1n(q2)}n≥1 ⊆ [0, 1] there

exists a further subsequence F2n(q2) such that F2n(q2) converges to a number

that we denote Q(q2); and so on.

Let us consider sequence of cdfs Fn = Fnn.
3 By construction, for every

q ∈ Q we have

Fn(q) → Q(q).

Note that Q is non-decreasing function on Q with values in [0, 1].

Now, for all x ∈ R we define

F (x) = inf{Q(q) : x < q}.
3It is so-called Cantor diagonal sequence.
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It is easy to see that F is non-decreasing.

Next, we show that F is right-continuous. Let xk ↓ x and d = limk F (xk).

Since for any xk we have F (x) ≤ F (xk) it follows that F (x) ≤ d. Assume that

F (x) < d. Then there exists x < q ∈ Q such that Q(q) < d. For large k we have

x < xk < q, and, therefore,

F (xk) ≤ Q(q) < d.

That is,

d = lim
k
F (xk) ≤ Q(q) < d,

a contradiction. Therefore, F (x) = limk F (xk).

Finally, let x be a continuity point of F . Take any y < x. Consider two

sequences rk, qk ∈ Q such that

y < rk < x < qk, rk ↓ y, and qk ↓ x.

Since Fn is nondecreasing we have

Fn(rk) ≤ Fn(x) ≤ Fn(qk).

Taking n→ ∞ we get

Q(rk) ≤ lim inf
n

Fn(x) ≤ lim sup
n

Fn(x) ≤ Q(qk).
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Since

lim
k
Q(rk) = inf

k
Q(rk) = inf{Q(q) : y < q} = F (y),

and

lim
k
Q(qk) = inf

k
Q(qk) = inf{Q(q) : x < q} = F (x),

we finally obtain that for any y < x

F (y) ≤ lim inf
n

Fn(x) ≤ lim sup
n

Fn(x) ≤ F (x).

Because of arbitrary choice of y we get that Fn(x) → F (x) at every point of

continuity x of F .

Exercise 7.8 Find an example of a sequence of cdfs {Fn}n≥1 and a nonde-

creasing, right-continuous function F such that

(a) Fn(x) → F (x) at every continuity point x of F ,

(b) 0 < F (+∞)− F (−∞) < 1.

Definition 7.6 A family of probability measures {Pt}t∈T on (R,B(R)) is said

to be relatively compact if every sequence of measures from the family contains

a subsequence that converges weakly to a probability measure. A family of cdfs

{Ft}t∈T is relatively compact if the corresponding family of probability measures

is relatively compact.

We use word “relatively” because the limit need not belong to the original

family.

140



Definition 7.7 A family of probability measures {Pt}t∈T on (R,B(R)) is said

to be tight if for each ǫ > 0 there exists a compact subset I of R such that

inf
t
Pt(I) > 1− ǫ.

A family of cdfs {Ft}t∈T is tight if the corresponding family of probability mea-

sures is tight.

Note that in the definition (because we consider R) the compact set I can be

substituted by a finite interval.

Exercise 7.9 Consider a sequence of random variables {Xn}n≥1 such that

Xn ≥ 0 and EXn = 1. Then Pn defined by

Pn(A) = EXn1Xn∈A, A ∈ B(R)

are probability measures on (R,B(R)).

Show that the following two statements are equivalent.

(a) The sequence of random variables {Xn}n≥1 is uniformly integrable.

(b) The sequence of probability measures {Pn}n≥1 is tight.

Theorem 7.9 (Prokhorov’s theorem) A family of probability measures {Pt}t∈T

on (R,B(R)) is relatively compact if and only if it is tight.

Proof. Necessity. Assume that the family {Pt}t∈T is relatively compact but

not tight. Since the family is not tight, there exists ǫ > 0 such that for every

interval In = [−n, n] we can find Pn with Pn(In) ≤ 1 − ǫ. But because the
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family is relatively compact we can find a subsequence Pnk
and a probability

measure P such that Pnk
=⇒ P. Let [a, b] be a continuity set of P such that

P([a, b]) > 1− ǫ. Then by Portmanteau theorem we have

1−ǫ < P([a, b]) = lim
k

Pnk
([a, b]) = lim

k
Pnk

([a, b]∩Ink
) ≤ lim sup

k
Pnk

(Ink
) ≤ 1−ǫ,

a contradiction.

Sufficiency. Let {Pn}n≥1 be a tight sequence of probability measures from

the family {Pt}t∈T . Let {Fn}n≥1 be the corresponding sequence of cdfs. By

Helly’s selection theorem there exists subsequence Fnk
and a nondecreasing,

right-continuous function F such that Fnk
(x) → F (x) at continuity points of

F . Let us show that F is, in fact, a proper cdf. Fix ǫ > 0. Since the family

{Pt}t∈T is tight we can find interval [a, b] such that

Pnk
([a, b]) ≥ 1− ǫ.

Let [a, b] ⊂ (a′, b′] and {a′, b′} is a continuity set of F . Then

1− ǫ ≤ Pnk
([a, b]) ≤ Pnk

((a′, b′]) = Fnk
(b′)− Fnk

(a′) → F (b′)− F (a′),

that is, F (+∞)− F (−∞) = 1, and, together with 0 ≤ F (−∞) ≤ F (+∞) ≤ 1,

it gives us that Fnk
=⇒ F , and, of course, Pnk

=⇒ P.

Corollary 7.2 Let {Pn}n≥1 be a tight sequence of probability measures on

(R,B(R)). Suppose that every weakly convergent subsequence converges to the
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same probability measure P. Then Pn =⇒ P.

Proof. Suppose that Pn =⇒ P is not true. It means that there exists a point of

continuity of P, x, such that Pn[(−∞, x]] do not converge to P[(−∞, x]], that

there exists ǫ > 0 such that |Pnk
[(−∞, x]]−P[(−∞, x]]| > ǫ for some sequence

{nk}. By the Prokhorov’s theorem, there is a further subsequence that converges

weakly to some probability measure, and by the corollary assumption it must

converge to P, but no subsequence of Pnk
can converge weakly to P.

Theorem 7.10 (Continuity Theorem) Let {P,Pn}n≥1 be probability mea-

sures on (R,B(R)) with characteristic functions {φ, φn}n≥1. A necessary and

sufficient condition for Pn =⇒ P is that φn(t) → φ(t) for every t.

Let us first prove the following lemma.

Lemma 7.2 Let φ be the characteristic function of a probability measure P.

Then for any A > 0 we have

P[(−A,A)] ≥ 1−
√
A

2

∫

|t|<1/
√
A

|1− φ(t)|dt− 1/
√
A.

Proof. For any ǫ > 0 by Fubini’s theorem we get

1

2ǫ

∫ ǫ

−ǫ

φ(t)dt =
1

2ǫ

∫ ǫ

−ǫ

∫

R

eitxP(dx)dt

=
1

2ǫ

∫

R

∫ ǫ

−ǫ

eitxdtP(dx)

=
1

2ǫ

∫

R

2 sin(ǫx)

x
P(dx)

=

∫

R

sin(ǫx)

ǫx
P(dx)
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≤
∫

|x|<1/ǫ2
P(dx) +

∫

|x|≥1/ǫ2

1

ǫ|x|P(dx)

≤ P[(−1/ǫ2, 1/ǫ2)] + ǫ.

Thus, we have

P[(−1/ǫ2, 1/ǫ2)]dt ≥ 1 +
1

2ǫ

∫ ǫ

−ǫ

(φ(t) − 1)dt− ǫ

≥ 1− 1

2ǫ

∫ ǫ

−ǫ

|φ(t)− 1)|dt− ǫ.

Taking ǫ = 1/
√
A we get the result.

Theorem Proof.

Necessity. Since cos(tx) and sin(tx) are bounded continuous functions, the

necessity immediately follows from the Portmanteau theorem.

Sufficiency. By Lemma 7.2 we have

Pn[(−A,A)] ≥ 1−
√
A

2

∫

|t|<1/
√
A

|1− φn(t)|dt − 1/
√
A

≥ 1−
√
A

2

∫

|t|<1/
√
A

|1− φ(t)|dt

−
√
A

2

∫

|t|<1/
√
A

|φ(t) − φn(t)|dt − 1/
√
A.

≥ 1− sup
|t|<1/

√
A

|1− φ(t)|

−
√
A

2

∫

|t|<1/
√
A

|φ(t) − φn(t)|dt − 1/
√
A.
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By continuity of φ at 0 and the dominated convergence theorem we find that

the {Pn}n≥1 is tight. If a subsequence Pnk
converge weakly to a probability

measure Q with CF q(t), then by the necessity part φnk
(t) converges to q(t).

Therefore, φ(t) = q(t), and, by the uniqueness theorem (Theorem 6.5), we get

P = Q. Corollary 7.2 tells us that Pn =⇒ P.

Exercise 7.10 Show that
∣

∣

∣

∣

sin(x)

x

∣

∣

∣

∣

≤ 1.
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Chapter 8

Limit Theorems

8.1 Weak Law of Large Numbers

Theorem 8.1 (J. Bernoulli’s Law of Large Numbers, 1713) Let {Xn}n≥1

be i.i.d. Bernoulli random variables (that is, P(Xn = 1) = p and P(Xn = 0) =

1− p, where 0 < p < 1). Then for any ǫ > 0

P

(∣

∣

∣

∣

X1 + · · ·+Xn

n
− p

∣

∣

∣

∣

> ǫ

)

→ 0.

Theorem 8.2 (Chebyshev’s Law of Large Numbers, 1867) Let {Xn}n≥1

be independent random variables such that Var(Xn) < C. Then

∣

∣

∣

∣

X1 + · · ·+Xn

n
− EX1 + · · ·+EXn

n

∣

∣

∣

∣

P−→ 0.
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Proof. By Chebyshev’s inequality we get for any ǫ > 0

P

(∣

∣

∣

∣

X1 + · · ·+Xn

n
− EX1 + · · ·+EXn

n

∣

∣

∣

∣

> ǫ

)

≤ Var(X1 + · · ·+Xn)

n2ǫ2

≤ nC

n2ǫ2
→ 0.

Theorem 8.3 (Khinchin’s Law of Large Numbers, 1929) Let {Xn}n≥1 be

i.i.d. random variables such that E|Xn| <∞ and EXn = µ. Then

∣

∣

∣

∣

X1 + · · ·+Xn

n
− µ

∣

∣

∣

∣

P−→ 0.

Proof. Consider Yn = Xn − µ. We need to show that

∣

∣

∣

∣

Y1 + · · ·+ Yn
n

∣

∣

∣

∣

P−→ 0.

Note if φX(t) is a characteristic function of Xn then the characteristic function

of Yn

φY (t) = e−iµtφX(t).

By Theorem 6.6 for any fixed t

φ(Y1+···+Yn)/n(t) = [φY (t/n)]
n
=

[

1 + i · 0 · t
n
+ o(1/n)

]n

→ 1.

By continuity theorem (Y1 + · · · + Yn)/n
d−→ 0 and, therefore, we get that
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(Y1 + · · ·+ Yn)/n
P−→ 0.

8.2 Central Limit Theorem

Let us start from a simple result for the binomial distribution.

Theorem 8.4 (Poisson’s Theorem, 1837) Let {Xmn}1≤m≤n be i.i.d. Bernoulli

random variables with probability of success pn = λ/n such that 0 < λ/n < 1.

Let Z be a random variable with Poisson distribution with mean λ. Then as

n→ ∞

X1n + · · ·+Xnn
d−→ Z.

Proof. Note that the characteristic function ofXmn is equal to (1−λ/n)+eitλ/n.

For any fixed t we have

φ(X1n+···+Xnn)(t) = [1 +
λ

n
(eit − 1)]n → exp(λ(eit − 1)),

as n→ ∞. The continuity theorem finishes the proof.

Central Limit Theorem (CLT) is a common name for limit theorems that

provide conditions under which sum of random variables (appropriately central-

ized and normalized) weakly converges to the standard normal distribution. We

will denote this convergence via
d−→ N (0, 1). The first CLT for sum of Bernoulli

random variables with p = 1/2 was established by de Moivre in 1730. Laplace

generalized it to the case of arbitrary p in 1812. The next theorem sometimes

is called Levi’s theorem
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Theorem 8.5 (Central Limit Theorem) Let {Xn}n≥1 be a sequence of i.i.d.

random variables with mean µ and variance 0 < σ2 <∞. Then

X1 + · · ·+Xn − nµ

σ
√
n

d−→ N (0, 1).

Proof. Consider Yn = (Xn −µ)/σ. Let φY (t) be a characteristic function of Yn.

By Theorem 6.6 for any fixed t

φ(Y1+···+Yn)/
√
n(t) =

[

φY (t/
√
n)
]n

=

[

1 +
it√
n
E(Y1) +

i2t2

2n
Var(Y1) + o(1/n)

]n

=

[

1− t2

2n
+ o(1/n)

]n

→ e−t2/2.

By continuity theorem we immediately get the result.

Now we prove a CLT for sums of independent (but not necessarily identi-

cally distributed) random variables. Let {Xn}n≥1 be a sequence of independent

random variables with means µn and variances 0 < σ2
n <∞. Denote

Sn = X1 + · · ·+Xn,

B2
n = Var(Sn) =

n
∑

k=1

σ2
k,

and for ǫ > 0

Ln(ǫ) =
1

B2
n

n
∑

k=1

E(Xk − µk)
21|Xk−µk|>ǫBn

.
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Theorem 8.6 (Lindeberg-Feller Theorem) Let {Xn}n≥1 be a sequence of

independent random variables with means µn and variances 0 < σ2
n < ∞. If

Ln(ǫ) → 0 for any ǫ > 0 then

1. (uniform asymptotic negligibility)

max
1≤k≤n

σ2
k

B2
n

→ 0,

2. (normality)

Sn −ESn

Bn

d−→ N (0, 1).

Proof.

1. Note that for any 1 ≤ k ≤ n we have

σ2
k

B2
n

=
1

B2
n

E(Xk − µk)
2

=
1

B2
n

E(Xk − µk)
21|Xk−µk|≤ǫBn

+
1

B2
n

E(Xk − µk)
21|Xk−µk|>ǫBn

≤ ǫ2 + Ln(ǫ).

Therefore, we have a uniform bound

max
1≤k≤n

σ2
k

B2
n

≤ ǫ2 + Ln(ǫ),

and by choosing small ǫ, and then sufficiently large n we can make the right-hand

side as small as we want.
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2. Without loss of generality let us assume that EXk = µk = 0. Let

φk(t) = EeitXk ,

and

ψn(t) = EeitSn/Bn =

n
∏

k=1

φk(t/Bn).

We need to show that ψn(t) → e−t2/2 for any t ∈ R as n→ ∞, or equivalently,

lnψn(t) + t2/2 → 0,

where ln denotes the principal branch of the complex logarithm.

First, let us show that for k = 1, . . . , n

lnφk(t/Bn) = φk(t/Bn)− 1 + rk(t), (8.1)

where rk(t) are such that
∑n

k=1 |rk(t)| → 0 as n→ ∞. Recall that (Lemma 6.5)

∣

∣

∣

∣

∣

∣

eix −
k
∑

j=0

(ix)j

j!

∣

∣

∣

∣

∣

∣

≤ |x|k+1

(k + 1)!
. (8.2)

Therefore,

|φk(t/Bn)− 1| =
∣

∣

∣

∣

E

[

eitXk/Bn − 1− itXk

Bn

]∣

∣

∣

∣

≤ E
t2X2

k

2B2
n

=
t2σ2

k

2B2
n

.
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Since

t2σ2
k

2B2
n

≤ t2

2
max

1≤k≤n

σ2
k

B2
n

→ 0,

as n→ ∞, we get that |φk(t/Bn)− 1| < 1/2 for sufficiently large n, and

lnφk(t/Bn) = ln(1 + φk(t/Bn)− 1)

= φk(t/Bn)− 1 +

∞
∑

j=2

(−1)j+1 (φk(t/Bn)− 1)j

j

= φk(t/Bn)− 1 + rk(t).

Now, taking into account that |φk(t/Bn)− 1| < 1/2 first we get that

|rk(t)| ≤
∞
∑

j=2

|φk(t/Bn)− 1|j

= |φk(t/Bn)− 1|2 1

1− |φk(t/Bn)− 1|

≤ 2|φk(t/Bn)− 1|2

Hence we then find that

n
∑

k=1

|rk(t)| ≤ 2

n
∑

k=1

|φk(t/Bn)− 1|2

= 2

n
∑

k=1

∣

∣

∣

∣

E

[

eitXk/Bn − 1− itXk

Bn

]∣

∣

∣

∣

2

≤ 2

n
∑

k=1

t4σ4
k

4B4
n
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≤ t4

2
max

1≤k≤n

σ2
k

B2
n

n
∑

k=1

σ2
k

B2
n

=
t4

2
max

1≤k≤n

σ2
k

B2
n

→ 0,

as n→ ∞.

Using (8.1) and that

n
∑

k=1

σ2
k

B2
n

= 1 we get that

lnψn(t) + t2/2 =
n
∑

k=1

[

φk(t/Bn)− 1 +
t2σ2

k

2B2
n

]

+
n
∑

k=1

rk(t).

Next, note that because of (8.2) and the triangle inequality we obtain that

∣

∣

∣

∣

φk(t/Bn)− 1 +
t2σ2

k

2B2
n

∣

∣

∣

∣

=

∣

∣

∣

∣

E

[

eitXk/Bn − 1− itXk

Bn
− i2t2X2

k

2B2
n

]∣

∣

∣

∣

≤
∣

∣

∣

∣

E

[

eitXk/Bn − 1− itXk

Bn
− i2t2X2

k

2B2
n

]

1|Xk|≤ǫBn

∣

∣

∣

∣

+

∣

∣

∣

∣

E

[

eitXk/Bn − 1− itXk

Bn
− i2t2X2

k

2B2
n

]

1|Xk|>ǫBn

∣

∣

∣

∣

≤E
|t|3|Xk|3
6B3

n

1|Xk|≤ǫBn
+E

t2X2
k

B2
n

1|Xk|>ǫBn

≤|t|3
6
ǫ
σ2
k

B2
n

+
t2

B2
n

EX2
k1|Xk|>ǫBn

.

Therefore, finally we obtain

lnψn(t) + t2/2 ≤ |t|3
6
ǫ

n
∑

k=1

σ2
k

B2
n

+
t2

B2
n

n
∑

k=1

EX2
k1|Xk|>ǫBn

+

n
∑

k=1

|rk(t)|

=
|t|3
6
ǫ+ t2Ln(ǫ) +

n
∑

k=1

|rk(t)|,

which can be made as small as we want by choosing ǫ, and then n.
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Note that the CLT for i.i.d. random variables follows from the Lindeberg-

Feller Theorem. The next so-called Lyapunov’s condition is easier to check and

it is sufficient for Ln(ǫ) → 0. More specifically, we have the following theorem.

Theorem 8.7 (Lyapunov Theorem) Assume that E|Xk|2+δ < ∞ for some

δ > 0 and k = 1, 2, . . . . If

1

B2+δ
n

n
∑

k=1

E|Xk − µk|2+δ → 0

then

Sn −ESn

Bn

d−→ N (0, 1).

Proof. Just note that

1

B2
n

n
∑

k=1

E(Xk − µk)
21|Xk−µk|>ǫBn

=
1

B2
n

n
∑

k=1

E
|Xk − µk|2+δ

|Xk − µk|δ
1|Xk−µk|>ǫBn

≤ 1

ǫδB2+δ
n

n
∑

k=1

E|Xk − µk|2+δ → 0.

Exercise 8.1 Let {Xn}n≥1 be a sequence of independent random variables

with variances 0 < σ2
n <∞. Show that Ln(ǫ) → 0 implies that Bn → ∞.

Exercise 8.2 Let {Xn}n≥1 be a sequence of independent random variables such

that 0 < infn Var(Xn) and supn E|Xn|3 < ∞. Show that (Sn − ESn)/Bn
d−→

N (0, 1).
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Exercise 8.3 Let {Xn}n≥1 be a sequence of i.i.d. random variables with means

µ and variances 0 < σ2 <∞. Show that Ln(ǫ) → 0.

8.3 Convergence of Series of Random Variables

Let {Xn}n≥1 be a sequence of i.i.d. random variables with P(Xn = 1) = P (X =

−1) = 1/2. Consider random variables Sn =
∑n

k=1Xk/k. What can we say

about the a.s. convergence of this sequence?

Theorem 8.8 (Cauchy Criterion for a.s. Convergence) The following three

conditions are equivalent.

1. Xn is convergent with probability 1,

2. for every ǫ > 0

P

[

sup
k,l≥n

|Xk −Xl| ≥ ǫ

]

→ 0, as n→ ∞,

3. for every ǫ > 0

P

[

sup
k≥0

|Xn+k −Xn| ≥ ǫ

]

→ 0, as n→ ∞.

Proof.

(1. ⇒ 2.) Let Xn
a.s.−→ X . Since

sup
k,l≥n

|Xk −Xl| ≤ sup
k≥n

|Xk −X |+ sup
l≥n

|Xl −X |,
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by Theorem 7.1 we get the result.

(2. ⇒ 1.) Let B = {ω : Xn(ω) does not converge}. Note that

B ={ω : lim inf
n

Xn(ω) < lim sup
n

Xn(ω)}

={ω : ∃N ≥ 1 ∀n ≥ 1 ∃k, l ≥ n st |Xl(ω)−Xk(ω)| > 1/N}.

So, we have

B =

∞
⋃

N=1

∞
⋂

n=1

[ sup
k,l≥n

|Xk −Xl| > 1/N ].

Note that An = [supk,l≥n |Xk −Xl| > 1/N ] is a monotone decreasing sequence

of events. Therefore,

P(B) ≤
∞
∑

N=1

P
(

∞
⋂

n=1

[ sup
k,l≥n

|Xk −Xl| > 1/N ]
)

.

But for any fixed N we have

P
(

∞
⋂

n=1

[ sup
k,l≥n

|Xk −Xl| > 1/N ]
)

= lim
n→∞

P
(

[ sup
k,l≥n

|Xk −Xl| > 1/N ]
)

= 0,

That is, we have that P(B) = 0.
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(2. ⇔ 3.) Just observe that

sup
k≥0

|Xn+k −Xn| ≤ sup
k,l≥0

|Xn+k −Xn+l| ≤ 2 sup
k≥0

|Xn+k −Xn|.

This completes the proof.

Exercise 8.4 Show that if 0 ≤ Xn ≤ Yn and Yn
P−→ 0, then Xn

P−→ 0.

Theorem 8.9 (Kolmogorov’s Inequality) Let {Xn}n≥1 be a sequence of in-

dependent random variables with means µn and variances σ2
n <∞. Then

P



 max
1≤k≤n

∣

∣

∣

k
∑

j=1

(Xj − µj)
∣

∣

∣ ≥ ǫ



 ≤
n
∑

j=1

σ2
j

ǫ2
.

Proof. Without loss of generality we assume that µn = 0. Denote Sn = X1 +

· · ·+Xn. Consider the following events:

A = {ω : max
1≤k≤n

|Sk(ω)| ≥ ǫ},

A1 = {ω : |S1(ω)| ≥ ǫ},

A2 = {ω : |S1(ω)| < ǫ, |S2(ω)| ≥ ǫ},

· · ·

An = {ω : |S1(ω)| < ǫ, . . . , |Sn−1(ω)| < ǫ, |Sn(ω)| ≥ ǫ}.

It is obvious that A = ∪n
k=1Ak, and AkAl = ∅ if k 6= l. First, note that

Var(Sn) = ES2
n ≥ ES2

n1A =

n
∑

k=1

ES2
n1Ak

.
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Now, we find that

ES2
n1Ak

= E[Sk +Xk+1 + · · ·+Xn]
21Ak

= E[Sk]
21Ak

+E[Xk+1 + · · ·+Xn]
21Ak

+ 2ESk(Xk+1 + · · ·+Xn)1Ak

= E[Sk]
21Ak

+E[Xk+1 + · · ·+Xn]
21Ak

+ 2ESk1Ak
E(Xk+1 + · · ·+Xn)

= E[Sk]
21Ak

+E[Xk+1 + · · ·+Xn]
21Ak

≥ E[Sk]
21Ak

≥ ǫ2P(Ak).

Thus we finally get that

Var(Sn) ≥
n
∑

k=1

ǫ2P(Ak) = ǫ2P(A).

Exercise 8.5 (symmetrization trick) Let X and X ′ be i.i.d. with mean µ,

variance σ2 and CF φ(t). Show thatX−X ′ is symmetrically distributed random

variable with E(X −X ′) = 0, Var(X −X ′) = 2σ2, and φX−X′(t) = |φ(t)|2.

Theorem 8.10 (Two-Series Theorem) Let {Xn}n≥1 be a sequence of inde-

pendent random variables with means µn and variances σ2
n <∞.

1. If both series
∑

n µn and
∑

n σ
2
n converge, then

∑

nXn converges with

probability 1.

2. If
∑

nXn converges with probability 1 and there is C such that P(|Xn| ≤
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C) = 1 for all n, then both
∑

n µn and
∑

n σ
2
n converge.

Proof.

1. Without loss of generality we assume that µn = 0. Denote Sn = X1 +

· · · +Xn. By Cauchy criterion (Theorem 8.8) we need to show that for every

ǫ > 0

P

[

sup
k≥0

|Sn+k − Sn| ≥ ǫ

]

→ 0, as n→ ∞.

By Kolmogorov’s inequality we have

P

[

sup
k≥0

|Sn+k − Sn| ≥ ǫ

]

= lim
N→∞

P

[

sup
1≤k≤N

|Sn+k − Sn| ≥ ǫ

]

≤ lim
N→∞

n+N
∑

k=n+1

σ2
k/ǫ

2

=

∞
∑

k=n+1

σ2
k/ǫ

2 → 0,

as n→ ∞.

2. Since Sn
a.s.−→ S, at any t ∈ R the CFs of Sn converge to the CF of random

variable S. But

φSn
(t) =

n
∏

j=1

φXj
(t),

therefore,
∞
∏

j=1

φXj
(t) = φS(t),

and
∞
∏

j=1

|φXj
(t)|2 = |φS(t)|2 > 0
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for all t sufficiently close to 0, because |φS(t)|2 is a CF. By a standard result

from analysis we get

∞ >

∞
∑

j=1

(1− |φXj
(t)|2)

=

∞
∑

j=1

∫ 2C

−2C

(1− cos(tx))Fj(dx)

= 2

∞
∑

j=1

∫ 2C

−2C

sin2(tx/2)Fj(dx),

where Fj is a cdf that corresponds to CF |φXj
(t)|2. Since | sin(y)| > |y|/2 for

small y, we can pick up t close to 0 such that

∞ > 2

∞
∑

j=1

∫ 2C

−2C

sin2(tx/2)Fj(dx)

> 2
∞
∑

j=1

∫ 2C

−2C

t2x2

16
Fj(dx)

=
t2

8

∞
∑

j=1

(2σ2
j )

=
t2

4

∞
∑

j=1

σ2
j .

That is,
∑

n σ
2
n converges. By the first part of the theorem

∑

n(Xn − µn)

converges with probability 1. Taking into account that
∑

nXn converges with

probability 1 as well, we also get that
∑

n µn converges.
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Exercise 8.6 Let {Xn}n≥1 be a sequence of i.i.d. random variables with

P(Xn = 1) = P (X = −1) = 1/2. Show that
∑

kXk/k converges with probabil-

ity 1.

Theorem 8.11 (Three-Series Theorem) Let {Xn}n≥1 be a sequence of in-

dependent random variables. For any C > 0 denote XC
j = Xj1|Xj |≤C.

1. If there is C > 0 such that
∑

n EX
C
n ,
∑

n Var(XC
n ) and

∑

n P(|Xn| > C)

converge, then
∑

nXn converges with probability 1.

2. If
∑

nXn converges with probability 1, then
∑

n EX
C
n ,
∑

n Var(XC
n ) and

∑

n P(|Xn| > C) converge for every C > 0.

Proof.

1. By the two-series theorem
∑

nX
C
n converges with probability 1. Because

∑

n P(|Xn| > C) < ∞, by the Borel-Cantelli lemma we have that P(|Xn| >

C i.o.) = 0, that is, Xn = XC
n for all n with at most finitely many exceptions.

Hence
∑

nXn converges with probability 1 as well.

2. The a.s. convergence of
∑

nXn implies that Xn → 0 with probability

1. Therefore, P(|Xn| > C i.o.) = 0 for any C > 0, and by the Borel-Cantelli

lemma (Xn are independent!) we obtain that
∑

n P(|Xn| > C) <∞. Moreover,

the a.s. convergence of
∑

nXn together with P(|Xn| > C i.o.) = 0 implies that

∑

nX
C
n converges with probability 1. Therefore, by the two-series theorem we

get that
∑

n EX
C
n and

∑

n Var(XC
n ) converge.

Exercise 8.7 Let {Xn}n≥1 be a sequence of independent non-negative random
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variables. Show that
∑

nXn converges with probability 1 if and only if

∑

n

[P(Xn > 1) +E(Xn1Xn≤1)] <∞.

Exercise 8.8 Let {Xn}n≥1 be a sequence of independent non-negative random

variables. Show that
∑

nXn converges with probability 1 if and only if

∑

n

E
Xn

1 +Xn
<∞.

Exercise 8.9 Let {Xn}n≥1 be a sequence of independent random variables

random variables with EXn = 0. Show that if

∑

n

E
X2

n

1 + |Xn|
<∞,

then
∑

nXn converges with probability 1.

8.4 Strong Law of Large Numbers

We will begin with two auxiliary results.

Lemma 8.1 (Toeplitz Lemma) Let {an}n≥1 be a sequence of positive num-

bers, bn =
∑n

k=1 ak, and suppose that bn ↑ ∞. If {xn}n≥1 is such that xn → x

then

1

bn

n
∑

k=1

akxk → x.
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Proof. Fix ǫ > 0. First, choose n0 such that |xn−x| < ǫ/2 for all n > n0. Then

choose n1 > n0 such that

1

bn1

n0
∑

k=1

ak|xk − x| < ǫ/2.

Now, for all n > n1 we have

∣

∣

∣

∣

∣

1

bn

n
∑

k=1

akxk − x

∣

∣

∣

∣

∣

≤ 1

bn

n
∑

k=1

ak |xk − x|

≤ 1

bn

n0
∑

k=1

ak |xk − x|+ 1

bn

n
∑

k=n0+1

ak |xk − x|

≤ 1

bn1

n0
∑

k=1

ak |xk − x|+ 1

bn

n
∑

k=n0+1

ak |xk − x|

≤ ǫ

2
+
bn − bn0

bn

ǫ

2

≤ ǫ.

Exercise 8.10 Suppose that {xn}n≥1 is such that xn → x. Show that

x1 + · · ·+ xn
n

→ x.

Lemma 8.2 (Kronecker’s Lemma) Let {bn}n≥1 be a sequence of positive in-

creasing numbers, and bn ↑ ∞. If {xn}n≥1 is such that
∑

n xn converges then

1

bn

n
∑

k=1

bkxk → 0.
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Proof. Denote b0 = 0, S0 = 0, Sn =
∑n

k=1 xk, and S = limn→∞ Sn. Then

n
∑

k=1

bkxk =
n
∑

k=1

bk(Sk − Sk−1) = bnSn −
n
∑

k=1

(bk − bk−1)Sk−1,

that is,

1

bn

n
∑

k=1

bkxk = Sn − 1

bn

n
∑

k=1

(bk − bk−1)Sk−1.

Since Sn → S, then by Toeplitz lemma

1

bn

n
∑

k=1

(bk − bk−1)Sk−1 → S

as well. Therefore,

1

bn

n
∑

k=1

bkxk → 0.

Exercise 8.11 Suppose that
∑

n xn/n converges show that

x1 + · · ·+ xn
n

→ 0.

Theorem 8.12 (Strong LLN) Let {Xn}n≥1 be a sequence of independent ran-

dom variables with finite second moments. Suppose that {bn}n≥1 is a sequence

of positive increasing numbers such that bn ↑ ∞, and

∑

n

VarXn

b2n
<∞.
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Then with probability 1

Sn −ESn

bn
→ 0.

Proof. By the two-series theorem with probability 1

∑

n

Xn − EXn

bn

converges. Therefore, by Kronecker’s lemma with probability 1

Sn −ESn

bn
=

1

bn

n
∑

k=1

bk
Xk − EXk

bk
→ 0

as n→ ∞.

Exercise 8.12 Let {Xn}n≥1 be a sequence of i.i.d. random variables with

P(Xn = 1) = P (X = −1) = 1/2. Show that with probability 1

X1 + · · ·+Xn√
n lnn

→ 0.

Lemma 8.3 Let X be nonnegative random variable with EX <∞. Show that

∞
∑

n=1

P(X ≥ n) ≤ EX ≤ 1 +

∞
∑

n=1

P(X ≥ n).

Proof. Exercise. Use EX =
∫∞
0

P(X ≥ x)dx (see Example 5.2).

Theorem 8.13 (Strong LLN for I.I.D. Random Variables) Let {Xn}n≥1

be a sequence of i.i.d. random variables with E|X1| <∞. Then with probability

165



1 we have

Sn

n
→ EX1.

Proof. Without loss of generality assume that EX1 = 0. Because of Lemma 8.3

and Borel-Cantelli we get that

P(|Xn| ≥ n i.o.) = 0.

Let Yn = Xn1|Xn|<n. Since Yn = Xn for all n with at most finitely many

exceptions,

X1 + · · ·+Xn

n
→ 0, a.s.

if and only if

Y1 + · · ·+ Yn
n

→ 0 a.s.

Next, note that by the dominated convergence theorem EYn = EX11|X1|<n → 0

as n→ ∞, therefore, by Toeplitz lemma

EY1 + · · ·+EYn
n

→ 0.

So, if we denote Zn = Yn −EYn we get that

Y1 + · · ·+ Yn
n

→ 0 a.s.
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if and only if

Z1 + · · ·+ Zn

n
→ 0 a.s.

The two-series theorem together with Kronecker’s Lemma tell us that all we

need to prove is that

∑

n

Var(Zn)

n2
<∞.

We have for

∞
∑

n=1

Var(Zn)

n2
≤

∞
∑

n=1

EY 2
n

n2

=

∞
∑

n=1

EX2
n1|Xn|<n

n2

=

∞
∑

n=1

EX2
11|X1|<n

n2

=

∞
∑

n=1

1

n2

n
∑

k=1

EX2
11k−1≤|X1|<k

=

∞
∑

k=1

EX2
11k−1≤|X1|<k

∞
∑

n=k

1

n2

≤
∞
∑

k=1

2

k
EX2

11k−1≤|X1|<k

≤ 2

∞
∑

k=1

E|X1|1k−1≤|X1|<k

= 2E|X1| <∞

This finishes the proof.
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Exercise 8.13 Show that for every k ≥ 1 we have

∞
∑

n=k

1

n2
≤ 2

k
.

Exercise 8.14 Show that EX2 <∞ if and only if

∞
∑

n=1

nP(|X | > n) <∞.

Finally, let us note that a converse (in a sense) is also true.

Proposition 8.1 Let {Xn}n≥1 be a sequence of i.i.d. random variables such

that with probability 1 we have

Sn

n
→ C <∞.

Then E|X1| <∞, and C = EX1.

Proof. Observe that with probability 1

Xn

n
=
Sn

n
− n− 1

n

Sn−1

n− 1
→ 0.

Therefore, P(|Xn| ≥ n i.o.) = 0, and by Borel-Cantelli lemma

∑

n

P(|X1| ≥ n) <∞.

Lemma 8.3 gives us E|X1| <∞, and by the strong LLN for i.i.d. sequences we
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get that C = EX1.

Example 8.1 (The Monte Carlo Method) Let f : [0, 1] → [0, 1] be contin-

uous function. Let X1, Y1, X2, Y2, . . . be a sequence of i.i.d. random variables

uniformly distributed on [0, 1]. Let Zn = 1f(Xn)>Yn
. Since

EZn =

∫ 1

0

f(x)dx <∞,

by the strong LLN we get that with probability 1

Z1 + · · ·+ Zn

n
→
∫ 1

0

f(x)dx.
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Chapter 9

Martingales

9.1 Conditional Expectation: Definition

Definition 9.1 Given are a probability space (Ω,F ,P), a σ-field G ⊂ F , and

a random variable X with E|X | < ∞. We define conditional expectation of X

given G, E(X |G), to be any random variable Y that satisfies the following two

conditions:

a) Y is G-measurable,

b) for all A ∈ G EX1A = EY 1A.

Theorem 9.1 (Existence and Uniqueness of Conditional Expectation)

The conditional expectation exists, a.s. unique, and integrable.

Proof. First, let us prove that the conditional expectation is integrable. Let
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A = {ω : Y > 0}, then

EY 1A = EX1A ≤ E|X |1A,

and

E(−Y )1Ac = E(−X)1Ac ≤ E|X |1Ac .

Thus E|Y | ≤ E|X |.

The existence follows from the Radon-Nikodým Theorem. Indeed, first as-

sume that X ≥ 0. Then

ν(A) = EX1A, A ∈ G

is a measure on (Ω,G), and it is absolutely continuous with respect to P. There-

fore, there exists an integrable G-measurable random variable Y ≥ 0 such that

ν(A) = EY 1A,

for all A ∈ G. The general case is treated with help of Hahn’s decomposition

X = X+ −X−.

Assume that Y ′ is another conditional expectation of X given G. Consider

Aǫ = {ω : Y − Y ′ ≥ ǫ}, where ǫ > 0. Then

0 = E(X −X)1Aǫ
= E(Y − Y ′)1Aǫ

≥ ǫP(Aǫ),

171



that is, P (Aǫ) = 0 for any ǫ > 0. Therefore, Y ≤ Y ′ a.s. But by the same

argument we get that Y ′ ≤ Y a.s.

Definition 9.2 Conditional probability of event A given σ-field G is defined by

P(A|G) = E(1A|G).

Exercise 9.1 Suppose that two integrable random variables X1 and X2 coin-

cide on B ∈ G. Show that E(X1|G) = E(X2|G) a.s. on B.

Exercise 9.2 Let A and B be two events, and G = σ(1B). Find P(A|G).

9.2 Properties of Conditional Expectation

Here all random variables on (Ω,F ,P) have finite absolute first moment, all

σ-fields are subfileds of F , and all equations/inequalities that involve random

variables hold a.s.

• E(E(X |G)) = E(X)

Proof. Since Ω ∈ G

E(E(X |G)) = E(E(X |G)1Ω) = E(X1Ω) = E(X).

• If X is G-measurable, then E(X |G) = X .

Proof. It is immediate from the definition.
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• (linearity) E(aX + bY |G) = aE(X |G) + bE(Y |G).

Proof. For any A ∈ G we have

E[(aE(X |G) + bE(Y |G))1A] = aE[E(X |G)1A] + bE[E(Y |G)1A]

= aE(X1A) + bE(Y 1A)

= E[(aX + bY )1A].

• (positivity) If X ≥ 0 then E(X |G) ≥ 0.

Proof. For any A ∈ G we have that G-measurable random variable E(X |G)

satisfies

E(E(X |G)1A) = E(X1A) ≥ 0,

therefore, (see page 67) we get E(X |G) ≥ 0.

• (monotonicity) If X ≥ Y then E(X |G) ≥ E(Y |G).

Proof. It immediately follows from positivity and linearity.

• (conditional monotone convergence theorem) If 0 ≤ Xn ↑ X with EX <

∞, then E(Xn|G) ↑ E(X |G) a.s.

Proof. By positivity and monotonicity 0 ≤ E(Xn|G) ↑. Let Y = lim supn E(Xn|G),

then Y is G-measurable, and for any A ∈ G E(Xn|G)1A ↑ Y 1A a.s. Since

for any A ∈ G we have

E(Xn1A) = E(E(Xn|G)1A),
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therefore, by the monotone convergence theorem

E(X1A) = E(Y 1A),

that is, Y = E(X |G).

• (conditional Fatou’s Lemma)

(1) If Xn ≥ Y for all n, and E(Y ) > −∞, then

E(lim inf
n

Xn|G) ≤ lim inf
n

E(Xn|G).

(2) If Xn ≤ Y for all n, and E(Y ) <∞, then

lim sup
n

E(Xn|G) ≤ E(lim sup
n

Xn|G).

(3) If |Xn| ≤ Y for all n, and E(Y ) <∞, then

E(lim inf
n

Xn|G) ≤ lim inf
n

E(Xn|G) ≤ lim sup
n

E(Xn|G) ≤ E(lim sup
n

Xn|G).

Proof. Exercise.

• (conditional dominated convergence theorem) Let Y,X1, X2, . . . be random

variables such that |Xn| ≤ Y for all n, E(Y ) <∞, and Xn → X a.s. Then

as n→ ∞ with probability 1

E(Xn|G) → E(X |G).
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Proof. Exercise.

• (tower property) If H ⊂ G ⊂ F , then

E(E(X |G)|H) = E(X |H) = E(E(X |H)|G).

Proof. The second equation is trivial. Now, let Y = E(X |G) and Z =

E(X |H). Just note that for every A ∈ H ⊂ G using definitions of Y and

Z we get

E(Y 1A) = E(X1A) = E(Z1A).

• (non-anticipating multiplier property) Suppose that both E|Y X | and E|X |

are both finite, and Y is G-measurable, then

E(Y X |G) = Y E(X |G).

Proof. Consider first Y = 1B where B ∈ G. Then for any A ∈ G we have

E(1BE(X |G)1A) = E(E(X |G)1AB)

= E(X1AB)

= E1BX1A,
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that is, 1BE(X |G) = E(1BX |G). By the linearity we get that it is true if

Y is a non-negative simple random variable. The monotone convergence

theorem gives us the formula for Y,X ≥ 0. Splitting X and Y into positive

and negative parts finishes the proof.

• (conditional Jensen’s inequality) Let f be a convex Borel function, and let

X be random variables with E|X |,E|f(X)| <∞. Then

f(E(X |G)) ≤ E(f(X)|G).

In particular, for p ≥ 1

|E(X |G)|p ≤ E(|X |p|G).

Proof. First recall that a Borel function f : R 7→ R is said to be convex iff

for any y there is a number a(y) such that

f(x) ≥ f(y) + (x− y)a(y)

for all x ∈ R.

By convexity we have (assuming x = X , y = E(X |G))

f(X) ≥ f(E(X |G)) + (X −E(X |G))a(E(X |G)),

and after taking the conditional expectation with respect to G we obtain

176



Jensen’s inequality.

Exercise: Provide the details. Note that we do not know if the expectation

of the RHS, in fact, exists.

• (independence) If X is independent of G, then E(X |G) = E(X).

Proof. Note that E(X) is G-measurable and for every A ∈ G we have

E(E(X)1A) = E(X)E(1A) = E(X1A).

• (geometrical interpretation) Suppose EX2,EY 2 <∞ and Y is G-measurable,

then

E(X −E(X |G))2 ≤ E(X − Y )2.

Proof. Denote Z = E(X |G). We have

E(X − Y )2 = E(X − Z + Z − Y )2

= E(X − Z)2 +E(Z − Y )2 + 2E[(X − Z)(Z − Y )]

≥ E(X − Z)2 + 2E[(X − Z)(Z − Y )]

But since Z − Y is G-measurable we also get

E[(X − Z)(Z − Y )] = E[E((X − Z)(Z − Y )|G)]
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= E[(Z − Y )E(X − Z|G)]

= E[(Z − Y ) · 0] = 0.

Note that the Cauchy-Schwarz inequality was used in the proof.

Exercise 9.3 Suppose X and Y are independent. Let f : R2 7→ R be a Borel

function such that E|f(X,Y )| <∞, and g(·) = E(f(·, Y )). Then

E(f(X,Y )|σ(X)) = g(X).

Exercise 9.4 Let Var(X |G) = E(X2|G)−E(X |G)2. Show that

Var(X) = E(Var(X |G)) +Var(E(X |G)).

Exercise 9.5 Let {Xn}n≥1 be a sequence of i.i.d. random variables with means

µ and variances σ2 <∞, and N an independent positive integer-valued random

variable with mean n and variance ν2. Show that

Var(X1 + · · ·+XN ) = σ2n+ µ2ν2.

Exercise 9.6 Let X1, . . . , Xn be i.i.d. random variables, Sn = X1 + · · ·+Xn,

and G = σ(Sn). Find E(X1|G).
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9.3 Martingale: Definition

Definition 9.3 Consider probability space (Ω,F ,P). A sequence of σ-fields

{Fn}n≥1 is called filtration if

F1 ⊂ F2 ⊂ F3 ⊂ · · · ⊂ F .

We also define F∞ ⊂ F as σ (∪nFn).

Definition 9.4 We say that a sequence of random variables {Xn}n≥1 is adapted

to a filtration {Fn}n≥1 if Xn is Fn-measurable for every n.

Definition 9.5 A sequence of random variables {Xn}n≥1 is called a martingale

with respect to filtration {Fn}n≥1 if

1. {Xn}n≥1 is adapted,

2. E|Xn| <∞ for all n,

3. E(Xn+1|Fn) = Xn for n ≥ 1.

If in the last condition we substitute = by ≥ then sequence is called a submartin-

gale. If = is replaced by ≤ then we say sequence forms a supermartingale.

Exercise 9.7 Prove the following statements.

1. If {Xn}n≥1 forms a submartingale, then {−Xn}n≥1 is a supermartingale.

2. {Xn}n≥1 is a martingale iff it is both a submartingale and supermartin-

gale.
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3. If {Xn}n≥1 forms a martingale, then for any 1 ≤ m ≤ n we haveE(Xn|Fm) =

Xm.

Example 9.1 Here are some examples of martingales.

• Let {Xn}n≥1 be a sequence of i.i.d. random variables with EXn = 0 and

EX2
n = 1, Fn = σ(X1, . . . , Xn), and Sn = X1 + · · · +Xn. Then both Sn

and S2
n − n are martingales.

• Let {Xn}n≥1 be a sequence of i.i.d. non-negative random variables with

EXn = 1, and Fn = σ(X1, . . . , Xn). Then
∏n

k=1Xk is a martingale.

• Let {Xn}n≥1 be a sequence of i.i.d. random variables with P(X = 1) = p,

P(X = −1) = q = 1− p, where 0 < p < 1, and Sn = X1 + · · ·+Xn. Then

(

q
p

)Sn

is a martingale.

• Consider a random variable X with finite absolute first moment, and some

filtration {Fn}n≥1. Define Xn = E(X |Fn), n ≥ 1, then Xn forms a

martingale with respect to {Fn}n≥1.

Exercise 9.8 Assume that {Xn}n≥1 and {Yn}n≥1 are submartingales with re-

spect to a filtration {Fn}n≥1. Show that {max(Xn, Yn)}n≥1 is a submartingale.

Exercise 9.9 Assume that {Xn}n≥1 is a martingale with respect to a filtration

{Fn}n≥1, and f is a convex Borel function such that E|f(Xn)| <∞. Show that

{f(Xn)}n≥1 is a submartingale.

Exercise 9.10 Assume that {Xn}n≥1 is a submartingale with respect to a
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filtration {Fn}n≥1, and f is a convex, nondecreasing Borel function such that

E|f(Xn)| <∞. Show that {f(Xn)}n≥1 is a submartingale.

Exercise 9.11 Let X = {x1, x2, ..., xn} be a fixed set of real numbers, and

let X1, X2, ..., Xn be the successive values of a sample of size n that is drawn

sequentially without replacement from the set X . Consider the sequence of

sigma-fields σ(X1, ..., Xk), 1 ≤ k ≤ n and the partial sums Sk = X1 + · · ·+Xk,

≤ k ≤ n. Show that (nSk − Snk)/(n− k), 1 ≤ k ≤ n− 1 is a martingale.

9.4 Optional Stopping Theorem

Definition 9.6 We say that a sequence of random variables {Cn}n≥1 is pre-

dictable with respect to a filtration {Fn}n≥0 if Cn is Fn−1-measurable for every

n ≥ 1.

Definition 9.7 Let {Xn}n≥0 be a martingale with respect to a filtration {Fn}n≥0.

Let {Cn}n≥1 be a predictable sequence. The martingale transform of {Xn}n≥0

by {Cn}n≥1, {(C ◦X)n}n≥1, is define by

(C ◦X)n =

n
∑

k=1

Ck(Xk −Xk−1).

Theorem 9.2 (Gambling Theorem) Let {Xn}n≥0 be a martingale with re-

spect to a filtration {Fn}n≥0, and let {Cn}n≥1 be a predictable sequence such

that E|Cn(Xn −Xn−1)| <∞. Then {(C ◦X)n}n≥1 forms a martingale.

If {Xn}n≥0 is a supermartingale (submartingale), and {Cn}n≥1 is also non-
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negative, then {(C ◦X)n}n≥1 is a supermartingale (submartingale).

Proof. It is obvious that (C ◦ X)n is Fn-measurable and integrable for every

n ≥ 1. Since

E(Cn(Xn −Xn−1)|Fn−1) = CnE(Xn −Xn−1|Fn−1) = 0

we get that {(C ◦X)n}n≥1 is a martingale (that starts at 0).

In a similar way we can prove the second statement.

Definition 9.8 A non-negative integer-valued random τ is called a stopping

time if for every n ≥ 1 event {τ ≤ n} ∈ Fn.

Example 9.2 Let {Xn}n≥1 be a sequence of i.i.d. random variables with

P(X = 1) = p, P(X = −1) = q = 1 − p, where 0 < p < 1, and Sn =

X1 + · · ·+Xn, S0 = 0. Take integers A,B ≥ 1. Define

τ = inf{k : Sk = A or Sk = −B}.

The random variable τ is a stopping time.

Example 9.3 If τ1 and τ2 are stoping times, then τ1 ∧ τ2 = min(τ1, τ2) is a

stopping time.

Theorem 9.3 (Stopped Martingale Theorem) If {Xn}n≥0 is a martingale

(super- or sub-) and τ is a stopping time, then {Xn∧τ}n≥0 is a martingale

(super- or sub-).

182



Proof. Define Cn = 1n≤τ . The random variable Cn takes only two values, 0

or 1, and {Cn = 0} = {n > τ} = {τ ≤ n − 1} ∈ Fn−1. Therefore, Cn is

Fn−1-measurable. But since

Xn∧τ = X0 + (C ◦X)n,

we get the results by the gambling theorem.

Theorem 9.4 (Doob’s Optional Stopping Theorem) Let {Xn}n≥0 be a mar-

tingale (super- or sub-) and τ be a stopping time. Then

E(X0) = E(Xτ ), (≥ or ≤)

in each of the following situations:

1. τ is bounded by integer N with probability 1;

2. supn |Xn∧τ | is bounded with probability 1;

3. Eτ <∞ and supn |Xn −Xn−1| is bounded by K with probability 1.

Proof. Let us prove the theorem for martingales, and leave the rest as an

exercise. By the stopped martingale theorem {Xn∧τ}n≥1 is a martingale,

EXn∧τ = EX0, (9.1)

and Xn∧τ → Xτ with probability 1 as n → ∞. Then for the first situation we

take n = N in (9.1). The second and third cases are proved by the dominated
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convergence theorem. The second situation is trivial. For the third case note

that

|Xn∧τ −X0| = |
n∧τ
∑

k=1

(Xk −Xk−1)| < Kτ,

and EKτ <∞.

Exercise 9.12 Let {Xn}n≥1 be a sequence of i.i.d. random variables with

P(X = 1) = p, P(X = −1) = q = 1 − p, where 0 < p < 1, and Sn =

X1 + · · ·+Xn, S0 = 0. Take integers A,B ≥ 1. Define

τ = inf{k : Sk = A or Sk = −B}.

Find P(Sτ = A).

Exercise 9.13 (Wald’s Identities) Let {Xn}n≥1 be a sequence of i.i.d. random

variables with EX2
1 < ∞, and τ is a stopping time with respect to Fn =

σ(X1, . . . , Xn). Assume that τ is bounded by integer N with probability 1.

Show that

E(X1 + · · ·+Xτ ) = EX1 · Eτ,

and

E[(X1 + · · ·+Xτ )− τEX1]
2 = Var(X1) ·Eτ.

Exercise 9.14 Let {Xn}n≥1 be a sequence of i.i.d. random variables with

P(X = 1) = 1/2, P(X = −1) = 1/2, and Sn = X1 + · · · + Xn, S0 = 0. Let

τ = inf{k : Sk = 1}. Prove that Eτ = ∞.
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9.5 Doob’s Convergence Theorem

Definition 9.9 Let {Xn}n≥0 be a martingale with respect to a filtration {Fn}n≥0.

The number of upcrossings of [a, b] made by {Xn}n≥0 by time N , UN [a, b], is

defined to be the largest k such that one can find

0 ≤ s1 < t1 < s2 < t2 < · · · < sk < tk ≤ N

such that

Xsi < a, Xti > b, 1 ≤ i ≤ k.

Let us introduce the following predictable process {Cn}n≥1. Define

C1 = 1X0<a,

and for n ≥ 2

Cn = 1Cn−1=11Xn−1≤b + 1Cn−1=01Xn−1<a.

Let Yn will be martingale transform of Xn, that is, Yn = (C ◦ X)n. Let us

explain the meaning of Yn. Suppose that Xn − Xn−1 represent our winnings

per unit stake in round n. Our gambling strategy is as follows. First we wait

till {Xn} is below a, then we play unit stakes until {Xn} gets above b. Once it

is above we stop and wait till it is below a, and then start playing again, and

so on. The process {Yn} represent our total winnings. Figure 9.5 provides an
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illustration. It is easy to see that

YN ≥ (b− a)UN [a, b]− (XN − a)−. (9.2)

Lemma 9.1 (Doob’s Upcrossing Lemma) For any N ≥ 0 we have

(b− a)EUN [a, b] ≤ E(XN − a)−.

Proof. Just observe that {Yn} is a martingale with EYN = 0.

Theorem 9.5 (Doob’s Convergence Theorem) Let {Xn}n≥0 be a martin-

gale with respect to a filtration {Fn}n≥0 such that

sup
n

E|Xn| <∞.

Then limnXn exists and is finite with probability 1.

Proof. Let a < b. Define U∞[a, b] = limn Un[a, b]. By Lemma 9.1 we have

(b− a)EUN [a, b] ≤ |a|+E|XN | ≤ |a|+ sup
n

E|Xn|.

By monotone convergence theorem we get that

EU∞[a, b] <∞,
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Figure 9.1: Upcrossings picture.
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and, therefore,

P(U∞[a, b] = ∞) = 0.

Now, note that

A = {ω : Xn(ω) does not converge to a limit in [−∞,+∞]}

= {ω : lim inf
n

Xn(ω) < lim sup
n

Xn(ω)}

=
⋃

a<b, a,b∈Q

{ω : lim inf
n

Xn(ω) < a < b < lim sup
n

Xn(ω)}.

Since

{ω : lim inf
n

Xn(ω) < a < b < lim sup
n

Xn(ω)} ⊂ {ω : U∞[a, b](ω) = ∞},

by the countability we get that P(A) = 0. Hence the limit of Xn exists a.s. in

[−∞,+∞]. Let X∞(ω) = limnXn(ω). Finally, by Fatou’s lemma we obtain

E|X∞| = E lim inf
n

|Xn| ≤ lim inf
n

E|Xn| ≤ sup
n

E|Xn| <∞,

so that

P(X∞ is finite) = 1.

Note here that we do not have convergence in L1.

Exercise 9.15 Prove Doob’s convergence theorem for supermartingales.
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Exercise 9.16 Let {Xn}n≥0 be a non-negative martingale, then limnXn exists

and finite with probability 1.

9.6 L2-Bounded Martingales

Let {Xn}n≥0 be a martingale with respect to a filtration {Fn}n≥0, and suppose

that EX2
n <∞ for every n.

Lemma 9.2 (Pythagoras’s Formula)

EX2
n = EX2

0 +

n
∑

k=1

E(Xk −Xk−1)
2.

Proof. Let s ≤ t ≤ u ≤ v. Then

E(Xv −Xu)(Xt −Xs) = E[E ((Xv −Xu)(Xt −Xs)|Fu)]

= E[(Xt −Xs)E ((Xv −Xu)|Fu)]

= E[(Xt −Xs)(Xu −Xu)]

= 0.

That is, the formula

Xn = X0 +

n
∑

k=1

(Xk −Xk−1)

expresses Xn as the sum of orthogonal terms.

Theorem 9.6 (L2-Bounded Martingale Convergence) Let {Xn}n≥0 be a

martingale with respect to a filtration {Fn}n≥0 with EX2
n < ∞ for every n.
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Then

sup
n

EX2
n <∞ (9.3)

if and only if

∑

k

E(Xk −Xk−1)
2 <∞.

Moreover, if (9.3) holds then Xn converges a.s. and in L2.

Proof. The first statement follows from Pythagoras’s formula. If (9.3) holds

then

sup
n

E|Xn| <∞,

and by Doob’s convergence theorem we get that limnXn exists a.s. Let X∞ =

limnXn. By Pythagoras’s formula we have that

E(Xn+k −Xn)
2 =

n+k
∑

i=n+1

E(Xi −Xi−1)
2.

Therefore, by Fatou’s Lemma we obtain

E(X∞ −Xn)
2 ≤

∞
∑

i=n+1

E(Xi −Xi−1)
2,

and, as a consequence,

lim
n

E(X∞ −Xn)
2 = 0.

Theorem 9.7 (Doob’s Decomposition) Any submartingale {Xn}n≥0 can be
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written in a unique way as

Xn =Mn +An,

where Mn is a martingale and An is an is a predictable increasing sequence with

A0 = 0.

Proof. Let

An −An−1 = E(Xn|Fn−1)−Xn−1

and

Mn = Xn −An.

It is clear that An is Fn−1-measurable, and it is increasing because Xn is sub-

martingale. Now, note that

E(Mn|Fn−1) = E(Xn|Fn−1)−An

= Xn−1 +An −An−1 −An

= Xn−1 −An−1

=Mn−1,

that is Mn is a martingale.

To prove uniqueness, assume that there is another decomposition Xn =

M ′
n +A′

n. Then

E(Xn|Fn−1) =M ′
n−1 +A′

n = Xn−1 −A′
n−1 +A′

n.
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This means that

A′
n −A′

n−1 = E(Xn|Fn−1)−Xn−1 = An −An−1,

and M ′
n =Mn.

If {Xn}n≥0 is a L2-bounded martingale with X0 = 0, then by Jensen’s

inequality {X2
n}n≥0 is a submartingale. In this case

An −An−1 = E[(X2
n −X2

n−1)|Fn−1] = E[(Xn −Xn−1)
2|Fn−1].

Since EX2
n = EAn we also get that

sup
n

EX2
n <∞

if and only if

E(sup
n
An) <∞.

Exercise 9.17 Let {Xn}n≥1 be a sequence of independent random variables

with EXn = 0 and EX2
n < ∞, Fn = σ(X1, . . . , Xn), and Sn = X1 + · · · +Xn.

What is An for the submartingale S2
n?

9.7 UI Martingales

Theorem 9.8 (UI Martingale Convergence) Let {Xn}n≥1 be a martingale

with respect to a filtration {Fn}n≥1, and assume that {Xn}n≥1 is uniformly
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integrable. Then Xn converges a.s. and in L1. Moreover, if we denote X∞ =

limnXn, then

Xn = E(X∞|Fn).

Proof. The uniform integrability implies that

sup
n

E|Xn| <∞.

Therefore, by Doob’s convergence theorem we get that limnXn exists with

probability 1. Because of uniform integrability we also have Xn
L1−→ X∞.

Now let us show that

Xn = E(X∞|Fn).

Note that for any A ∈ Fn and k ≥ n we have

EXk1A = E[E(Xk1A|Fn)] = E[E(Xk|Fn)1A] = EXn1A.

But since Xk1A
L1−→ X∞1A as well we get that

EX∞1A = EXn1A.

Lemma 9.3 Given are a probability space (Ω,F ,P), a filtration {Fn}n≥0, and

a random variable X with E|X | <∞. Let Xn = E(X |Fn). Then {Xn}n≥0 is a

UI martingale.
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Proof. We only need to check that {Xn}n≥0 is UI. Note that by Jensen’s in-

equality we have |Xn| ≤ E(|X ||Fn) a.s. and E|Xn| ≤ E|X |, hence for any

a, b > 0 we have

E|Xn|1|Xn|≥a ≤ E[1|Xn|≥aE(|X ||Fn)]

= E[E(|X |1|Xn|≥a|Fn)]

= E|X |1|Xn|≥a

= E|X |1|Xn|≥a1|X|≤b +E|X |1|Xn|≥a1|X|>b

≤ bP(|Xn| ≥ a) +E|X |1|X|>b

≤ b

a
E|Xn|+E|X |1|X|>b

≤ b

a
E|X |+E|X |1|X|>b.

Choosing large b first, and then large a, we can make the RHS (that bounds the

LHS uniformly w.r.t. n) as small as we want.

Theorem 9.9 (Levy’s Convergence Theorem) Given are a probability space

(Ω,F ,P), a filtration {Fn}n≥0, and a random variable X with E|X | <∞. Let

Xn = E(X |Fn). Then Xn → E(X |F∞) a.s and L1.

Proof. By the UI martingale convergence theorem we have that Xn converge

a.s. and in L1. Let Z = limnXn and Y = E(X |F∞). All we need to show is

that two F∞-measurable Z and Y are a.s. equal. Without loss of generality, we
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assume that X ≥ 0. Consider two measures on (Ω,F∞):

µZ(A) = EZ1A, and µY (A) = EY 1A.

By the tower property and the UI martingale convergence theorem

E(Y |Fn) = E(X |Fn) = Xn = E(Z|Fn).

Thus for any A ∈ Fn we have

EY 1A = EXn1A = EZ1A.

This means that two measure µZ and µY coincide on field ∪nFn, hence, by the

set induction they must coincide on F∞ = σ(∪nFn). Thus Z = Y a.s.

9.8 Martingale Inequalities

Here is a submartingale version of Kolmogorov’s inequality.

Theorem 9.10 (Doob’s Submartingale Inequality) Let {Xn}n≥1 be a non-

negative submartingale, and X∗
n = max1≤k≤nXk. Then

cP (X∗
n ≥ c) ≤ E

(

Xn1X∗
n≥c

)

≤ E (Xn) .
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Proof. Consider the following events:

A = {ω : X∗
n(ω) ≥ c},

A1 = {ω : X1(ω) ≥ c},

A2 = {ω : X1(ω) < c,X2(ω) ≥ c},

· · ·

An = {ω : X1(ω) < c, . . . , Xn−1(ω) < c,Xn(ω) ≥ c}.

It is obvious that A = ∪n
k=1Ak, and AkAl = ∅ if k 6= l. Now, Ak ∈ Fk, and

Xk ≥ c on Ak. Therefore,

EXn1Ak
= E[E(Xn1Ak

|Fk)] = E[1Ak
E(Xn|Fk)] ≥ E[1Ak

Xk] ≥ cP(Ak).

Summing over k finishes the proof.

Lemma 9.4 For any non-negative X and p > 0 we have

EXp = p

∫ ∞

0

tp−1P(X ≥ t)dt.

Proof. Exercise.

Theorem 9.11 (Doob’s Lp Maximal Inequality) Let {Xn}n≥1 be a non-

negative submartingale, X∗
n = max1≤k≤nXk, and p > 1. Denote || · ||p =

[E| · |p]1/p. Then

||X∗
n||p ≤ p

p− 1
||Xn||p.
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Proof. Assume first that ||X∗
n||p < ∞. By Doob’s inequality and Fubini’s

theorem we get

E(X∗
n)

p = p

∫ ∞

0

tp−1P(X∗
n ≥ t)dt

≤ p

∫ ∞

0

tp−2EXn1X∗
n≥tdt

≤ p

∫ ∞

0

tp−2

∫

Ω

Xn1X∗
n≥tdPdt

= p

∫

Ω

Xn

∫ ∞

0

tp−21X∗
n≥tdtdP

= p

∫

Ω

Xn

∫ X∗

n

0

tp−2dtdP

=
p

p− 1
E[Xn(X

∗
n)

p−1].

Hence, by Hölder’s inequality we obtain (here q = p/(p− 1))

E(X∗
n)

p ≤ qE[Xn(X
∗
n)

p−1] ≤ q||Xn||p||(X∗
n)

p−1||q = q||Xn||p[E(X∗
n)

p]1/q.

Dividing both sides of the inequality by [E(X∗
n)

p]1/q gives us the result.

Finally, note that if ||Xn||p = ∞, then the inequality is obvious. However,

if E||Xn||p <∞, then ||X∗
n||p <∞ as well (prove it!).

THE END
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covariance, 90

matrix, 91

cumulative distribution function, 24

of random variable, 45

discrete probability space, 28

distribution

absolutely continuous, 25

compound Poisson, 99

discrete, 25

lattice, 101
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singular, 25
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expectation

of nonnegative random variable, 61

of random variable, 63

of simple random variable, 59

field, 10

σ-field, 10

generated by random variable,
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Lebesgue, 35

tail, 56

filtration, 179

independent

σ-fields, 47

events, 47

random variable, 115

random variables, 47

inequality

Cauchy-Shwarz’s, 78

Chebyshev’s, 77

Doob’s Lp maximal, 196

Doob’s submartingale, 195

Hölder’s, 79

Jensen’s, 78

Kolmogorov’s, 157

Lyapunov’s, 79

Minkovski’s, 80

inversion formula, 102

for Z-valued RVs, 106

for Integrable CFs, 106, 114

for random vectors, 113

law of large numbers

Bernoulli’s, 146

Chebyshev’s, 146

Khinchin’s, 147

strong, 164

strong, i.i.d., 165

Lebesgue measure

on ([0, 1], B̄([0, 1])), 35

on ([0, 1],B([0, 1])), 34

lemma

Doob’s Upcrossing, 186

Fatou’s, 70

first Borel-Cantelli, 50
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Kronecker, 163

second Borel-Cantelli, 51

Toeplitz, 162

martingale, 179

martingale transform, 181

measure

absolutely continuous, 81

metric, 44

space, 44

moment, 108

absolute, 108

monotonic class, 11

normal distribution

multivariate, 117, 120

PDF, 120

standard, 95

number of upcrossings, 185

open set, 44

predictable sequence, 181

probability distribution

of random element, 45

of random variable, 45

probability space, 19

product space, 85

quantile function, 129

random element, 45

random variables, 36

extended, 39

independent, 47

simple, 37

approximation by, 39

relatively compact, 140

stoping time, 182

submartingale, 179

supermartingale, 179

system

λ-system, 13

λ′-system, 14

π-system, 13

theorem

σ-additive/continuous measures, 21

σ-field/monotonic class, 12

UI martingale convergence, 192

Bochner’s, 100
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Caratheodory’s, 31

change of variables, 82

continuity, 143

dominated convergence, 71

Doob’s convergence, 186

Dynkin’s, 14

Fubini’s, 85

gambling, 181

Heine-Borel, 33

Helly’s selection, 138

independence criterion, 48

Kolmogorov’s 0-1, 57

Lebesgue-Stieltjes Integral, 31

Levy’s convergence, 194

Lindeberg-Feller, 150

Lyapunov, 154

mapping, 133

measurability test, 37

monotone convergence, 68

optional stopping, 183

Pólya’s, 100

Poisson’s, 148

Portmanteau, 134

Prokhorov’s, 141

Radon-Nikodým, 82

set induction, 26

Skorohod’s, 130

Slutsky’s, 137

stopped martingale, 182

three-series, 161

two-series, 158

uniqueness, 105

tightness, 141

triangle inequality, 44

uniform integrability, 74

variance, 90

203


	Basic Set Theory
	Terminology and Notation
	Limits of Sets
	Fields
	Monotonic Class
	Dynkin's theorem
	Borel -fields

	Probability Space
	Definition and Basic Properties
	Cumulative Distribution Function
	Set Induction: Dynkin's Theorem Again
	Construction of Probability Spaces:  Discrete Models
	Construction of Probability Spaces:  Uncountable Spaces
	Lebesgue Measure on [0,1]

	Random Variables
	Measurability
	Approximation by Simple Random Variables
	Limits and Measurability
	Composition and Measurability
	Random Elements of Metric Spaces

	Independence
	Definitions of Independence
	Basic Criterion of Independence
	Borel-Cantelli Lemmas
	Tail -field. Kolmogorov's 0-1 Theorem

	Expectation
	Expectation of Simple Random Variables
	Expectation (Lebesgue Integral)
	Properties of Expectation
	Taking Limits under Expectation Sign
	Uniform Integrability
	Inequalities for Expectations
	Radon-Nikodým Theorem
	Change of Variables in a Lebesgue Integral
	Product Spaces and Fubini's Theorem
	Variance, Covariance and Covariance  Matrix

	Characteristic Functions
	Definition and Basic Properties
	Inversion Formula and Uniqueness
	Characteristic Functions and Moments
	Characteristic Function of Random Vectors
	Multivariate Normal Distribution

	Convergence
	Different Types of Convergence
	Weak Convergence of Probability Measures
	Weak Convergence and Pointwise Convergence of CFs

	Limit Theorems
	Weak Law of Large Numbers
	Central Limit Theorem
	Convergence of Series of Random Variables
	Strong Law of Large Numbers

	Martingales
	Conditional Expectation: Definition
	Properties of Conditional Expectation
	Martingale: Definition
	Optional Stopping Theorem
	Doob's Convergence Theorem
	L2-Bounded Martingales
	UI Martingales
	Martingale Inequalities

	Bibliography

